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This study investigates some of the basic aspects of conjugate, or coupled, heat
transfer problems. The ultimate interest is in the improvement of an existing computation-
al fluid dynamics (CFD) code by the inclusion of such a coupling capability. Many CFD
codes in the past have treated the thermal boundary conditions of a bounding solid as the
simple cases of either a surface across which there is no heat flux, or as a surface along
which the temperature is a constant with respect to both space and time. These conditions
are acceptable for some applications, but many real-world problems require a more realis-
tic treatment of the thermal wall condition.

A thermal coupling may be accomplished by maintaining a continuous heat flux
and temperature across the fluid—solid boundary. A heat flux is calculated on the fluid—side
of the interface, and this is used as a boundary condition for a heat—conduction solver to
calculate the temperature field within the solid and return an interface temperature to the
fluid. This process is executed for each time—step iteration of the code, and, therefore, the
temperature field of the solid and the fluid—solid interface temperature are allowed to

evolve with time and space.



A new heat—conduction solver is developed and coupled with an existing flow
solver. For this reason, some of the study is devoted to the testing of the accuracy of the
new heat—conduction solver on simple problems for which there exist analytical solutions.
Additional coverage is devoted to the possibility of thermal communication between solid
grid blocks. This is due to the fact that multiple grid blocking of the solid may be required
for more complex geometries. For such cases, a similar procedure as that described for the
fluid—solid interface is used to accomplish the solid—solid block—to—block communication.

Relatively simple test cases of fluid—solid and solid—solid coupling are conducted;
these cases are limited to two—dimensional grids. Other limitations include: the assump-
tion of constant thermophysical properties for the solid, no consideration for thermal ex-
pansion of the solid, and no consideration for the radiation mode of heat transfer. The re-

sults indicate that the heat—conduction/flow solver shows potential.
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CHAPTER 1
INTRODUCTION

The technology and application of computational science have advanced greatly
over the past fifteen years, the last ten especially. Research into numerical techniques and
grid generation and certainly the rapid advancement of computer speed and memory capa-
bility have aided this growth of the computational sciences. The fields of computational
fluid dynamics, heat transfer and solid mechanics continue to address ever—more challeng-
ing problems. Quite often, though, the three areas of fluid dynamics, heat transfer and sol-
id mechanics are treated independently of one another. For many applications this practice
may be acceptable, but for many other problems the interaction, or coupling, of these dif-
ferent fields needs to be accounted for. In this work, the coupling of a heat—conduction
solver with an existing flow solver will be investigated, the ultimate goal being to expand
the area of application of this flow solver.

Most flow solvers now make calculations that take into account the convective
transport of mass, momentum and energy and diffusive transport of momentum and ener-
gy. The diffusive transport of energy is by heat conduction within the fluid. The typical
solid—wall boundary conditions used to help solve the energy equation are either the adia-
batic wall condition (i.e., zero heat conduction across a solid boundary) or the condition of
a constant—temperature wall.

The existing flow solver is no exception to the above. The main code was devel-
oped over ten years ago by Arabshahi [1], and included the very useful capability to handle

multi-block, structured grids in a relatively general format. That is to say, there is little or

1



2
no restriction on the topology of the grids (O—, C—, or H-type may be used) or on the grid

surfaces which are used for communicating with other blocks. This code carries the name
“UBIFLOW’’. The numerical aspects of this solver are based on the work of Whitfield [2],
and Whitfield, et al. [3]. An extensive investigation by Belk [4] into the actual communica-
tion concerns across grid block boundaries served as an important reference for [1]. All of
these works were for the inviscid Euler equations as the mathematical model. Work by Simp-
son [5] and Gatlin [6] addressed the inclusion of diffusive effects into the governing equa-
tions, which served as a basis for further expanding the capability of [1] .

An additional code development was made by Cox [7] (named “CHEQNS”’) whose
work allowed for the treatment of equilibrium chemical reactions in the flow. A “black—
box” chemistry solver was attached to the flow solver of Ref. [1] to accomplish this. By as-
suming the reactions to be in local chemical equilibrium, the chemistry solver and flow solv-
er could be kept essentially separate. Therefore, the flow solver part of Cox [7] was for the
most part the same as that by Arabshahi [1]. The CHEQNS code is the one involved in this
work (although no chemically reacting flows will be included).

All of the flow solvers mentioned above, having the capability to include diffusive
effects, used simple thermal boundary conditions , such as those mentioned on the previous
page. These codes, as well as many others over the years, have not addressed the coupling
of heat conduction within solid bodies that bound the flow, because this has been of little con-
cern. However, papers in the technical literature over the last five to ten years show an in-
creasing interest in this coupling of the solid heat conduction with the flow solver. This is
often referred to as the conjugate (i.e., coupled) heat transfer problem.

An early paper by Lau, et al. [8] looks at the problem of internal fins for the possible
application to heat—exchanger problems. Works by Yu, et al. [9], and Pozzi and Lupo [10]
address the coupling of external flows with conduction in simple bodies such as flat plates,

wedges, and cones. A work by Trevino, et al. [11] analyzes the forced convection between
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two counter—flowing streams separated by a conducting plate. Coupled solid conduction and
natural or mixed convection are studied by Joubert and Le Quere [12] and Bernier and Baliga
[13]. These last two examples are, of course, low—speed flows. A study of conjugate heat
transfer in high—speed flow was conducted by Shope [14]; this problem dealt with the cool-
ing of a nozzle wall for a supersonic wind tunnel. A recent study by Janus and Newman [15]
looked at the coupling of aerodynamic and thermal effects for an optimization study of tur-
bine airfoil design. A paper by Rahaim, et al. [16] provides useful numerical and experimen-
tal data for coupled heat transfer in a high—speed flow. A very recent paper by Sondak and
Dorney [17] investigates coupled unsteady flow and heat conduction for a turbine stage; this
paper points out that the blocks within the conduction grid can be a potential source of nu-
merical problems (a point that will be discussed in the present work). Works by Chang and
Payne [18] and Shyy and Burke [19] look more directly at the numerical problems involved
at interfaces where an abrupt change in diffusion coefficients occurs. The former investi-
gates averaging of these interface coefficients, while the latter looks at the characteristics of
solving a truly coupled convection—diffusion problem by iterative methods. Finally, a recent
paper by Ruiz and Black [20] provides a technique for the zonal decomposition of solids and
the thermal communication among these solid sub—blocks.

The papers listed above cover a wide range of problem applications and are only a
sampling of the work that has been done in this area. One of the most noticeable points dem-
onstrated by these previous works is that the interest in the coupling of conduction heat trans-
fer with flow solvers is ever on the increase.

The objective of the present study is to enhance the present flow solver resulting from
the works of Arabshahi and Cox. Aspects of Arabshahi’s work will be used in an effort to
provide an arbitrary arrangement of grid blocks, both fluid and solid. A number of areas will
not be addressed, however: these include the modeling of temperature—dependent and direc-

tion—dependent properties within the solid, the possibility of thermal expansion of the solid,



4

and the possibility of radiation heat transfer. These are all potentially very important aspects
of the general problem, and will certainly need to be included in the future for more accurate
simulations. However, it is felt that these may be neglected at this time in order to gain some
basic understanding of the coupled problem.

A portion of the present work involves the code development of a heat—conduction
solver. The goal is to then add this solver to the present flow solver and to allow for the two
to be used either together or separately by means of defining parameters within the general
input file.

The general outline of the dissertation is the following. The second chapter presents
the governing equations for both the flow and heat—conduction solvers, which are included
as useful reference material. The third chapter discusses the general numerical algorithm and
methods. The fourth chapter discusses the possible means of block—to—block communica-
tion for both fluid—solid and solid—solid interfaces. Chapter five presents the primary results
from this work. Because the heat—conduction solver is new, a portion of these results are for
the validation of this code. Finally, chapter six offers a summary and some conclusions stem-

ming from this investigation.



CHAPTER I
GOVERNING EQUATIONS

Flow Solver
A computational fluid dynamics (CFD) or computational heat transfer (CHT) code
accomplishes its task by modeling the physics of the problem of interest. The heart of the
physics of such problems for a CFD code involves the conservation of three fundamental
entities: mass, momentum, and energy. The conservation laws for a compressible, viscous

and heat conducting fluid in an unsteady state are expressed mathematically as

P4V (oP) =0 @.1)
V) 5 oy =57 @2
%+6-(etr7)=—€-a+€-(f-r7) (2.3)

Equation (2.1) represents the conservation of mass; Equation (2.2) represents the con-
servation of momentum, and Equation (2.3) represents the conservation of total energy.
Each of these equations is applied to a small (ideally, infinitesimal) fluid volume. The
above partial differential equations are very general in nature and may be applied to any
coordinate system. Also included in these expressions are the assumptions of continuous
media with body forces (e.g., gravitational effects) neglected and no volumetric heat gen-

eration or heat sources. The left-hand side of each equation represents the sum of the time

5
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rate of change of each conserved quantity within a given volume and the convective flux,
or flow, of that quantity across the boundaries of the volume. Equations (2.2) and (2.3)
have non-zero terms on the right-hand side, which represent the diffusive flux of these
quantities across the volume boundaries.

The symbols and physical parameters of the governing equations are defined in the
nomenclature. Further (mathematical) definition of the stress tensor and total energy are

given below:
3 Lo I &
T = [—p +/1(V : v)]1+ﬂ vV + (Vv) ,
1 2
and e = pe; + §p|‘7| .

As already mentioned, the governing equations as in their current format may be
applied to any coordinate system. If the Cartesian system is preferred, the governing equa-

tions become Equations (2.4) through (2.8)

p dpw)  apv) | sew) _

= - > = , (mass) 2.4)
dou) 9 2 i 0
) 4 8o 4 p = 1) + el — ) 4 o — 72 = 0.
(x—momentum) (2.5
av) 5 d d
=2+ Lo — 7)) + 5(,01»2 +p = Ty) +alovw — 7y = 0,
(y-momentum) (2.6)
aow) 4 9 9 (2 -
—or + &(puw — Tx) t+ a—y(pVW - T)’Z) T &(pw tr- TZZ) =0,
%, g (z—momentum) 2.7)

d
+ @[(6’: + PV = Uty = Vi, — Wiy, + gy
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Using the assumption of A = — 2/3 u, the shear stress components of the stress tensor may

be expressed as Equations (2.9) through (2.14). And further assuming there to be no direc-

T = 2/3u 23—;‘ - i’—a; - %_vzv , (2.9)
Ty = 2/3u 2%’ - L), (2.10)
v = 2/3u(29% - %L _ ?—a; : (2.11)
Ty = ﬂ(g—;‘ + %) , @.12)

v , Iw
Tyz = ﬂ(& + a—y) .

tional dependence of the thermal conductivity of the fluid, the heat flux terms are given as

(2.14)

Equation (2.15)

ge= —x9L, gy = —K%, and g, = —x9L . (2d5)

Equations (2.1) through (2.3), or (2.4) through (2.8) are typically referred to as the

Navier—Stokes equations and are considered the governing equations for time—dependent,

compressible, viscous flow. Using these equations, the unknown variables

p, pu, pv, pw, and e, are determined. The additional thermodynamic variables, pres-

sure and temperature, may then be found by means of the equation of state and the relation
of pressure to internal energy, namely

= oRT ideal gas assumption
p=p ( g ption) 2.16)

and p = (y — 1)pe; (fromej =cy T).



Governing Equations in Vector Form

A compact form of Egs. (2.4) — (2.8) is given by

og  of 08  oh _

In this sense, the unknown conservative variables (i.e., p, pu, pv, pw, and e;) are
(X 2]

combined into one unknown entity, the ““q”” vector (not to be confused with the heat flux

vector). This vector is defined as

g=|prv|. (2.18)

The terms f, g, and h are referred to as the flux vectors, and, again, these terms represent
the transport, by both convective and diffusive means, of mass, momentum, and energy
across the bounding surfaces of a given control volume. These flux vectors are themselves
functions of the g—vector, i.e., f = f(q), g = g(q), and h = h(q). The flux vectors are given in

Equations (2.19) through (2.21) on the following page

Scaling of the Governing Equations

Until now, the governing equations have been assumed to be in terms of dimen-
sional variables. A step that is often necessary for computations of finite precision is that
of scaling these variables to some non—dimensional form. This process allows the vari-
ables to be expressed in roughly the same order of magnitude, where large differences in
magnitude may be present when in dimensional format.

The scaled format is also a very general representation in which the entire problem
is defined in terms of a few non—dimensional parameters. For example, the convective
terms are linked to the Mach Number, the diffusive terms to the Reynolds Number (the

viscous shear terms) and the Prandtl Number (the heat conduction terms). Spatial terms



pu i
pu2 +p — Txx
f=|pw Ty ’ (2.19)
PUW — Ty
(e; + Plu — Uty — Viyy — Wiy, + gy

ov -
PUY — Tyy

g = pv2 +p — 1y , (2.20)
(e; + plv — uty, — vy, — wry, + qy
oW T
PUW — Ty

PR i ' 2.21)

ow? +p — 1,
(e; + pW — Uty — Vi — Wiy + g,

are associated with a so—called characteristic length, and the thermodynamic aspect to the
ratio of specific heats, yy. Most of the flow solvers in use at MSU have been scaled in this
manner (e.g., see Janus [21], Arabshahi [1], and Chen [22]). Mach Number, Reynolds
Number, Prandtl Number, and vy are all input, and the length is accounted for in the size of
the grid (i.e., the grid is in terms of the characteristic length). This is satisfactory so long as
the gas in question is of a constant and uniform makeup. The solver used in this work has
been modified by Cox [7] so as to allow for flows in which chemical (equilibrium) reac-
tions are involved. In this type of flow, y will change with the chemical makeup; the flow
variables can no longer be scaled by constant, free—stream values of the Mach, Reynolds,
and Prandtl Numbers. Cox’s method of scaling is similar to the “‘conventional” method

(see Arabshahi [1]), with a few exceptions, and is shown on the following page.
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% y z
X = , y = 5 2 = .
L’ef Lref Lref
N N A a "
u vV w reft
= —) = = = =, t = 5
“ aref Y aref v aref Lref
_P __P
g Pref’ (Ioaz)ref ’
_ G _ T
e; = 2 T = T
ref ref
_ K _ &
# u ref ’ * Kref ’
where
— — 2 _
Iuref - (paL )ref ’ xref - (luR)ref » @ ref — (RT)ref
with
Rref = Universal Gas Constant

In the following relations, the ““ > and the subscript “ref” represent dimensional
quantities. Instead of inputting the Reynolds and Prandtl Numbers directly, as in the pre-
vious codes, dimensional values of pressure, temperature, velocity, density, and energy
and a designation of which pair of these variables to use is read for initialization and scal-
ing purposes. From the designated pair of thermodynamic variables, the others are then
calculated and initial and reference values determined. Either Mach Number or velocity is
still input and used to determine free—stream speed. For example, suppose free—stream val-
ues of pressure and temperature are designated for initialization and scaling. From this,
free—stream speed of sound, total energy, velocity (from the input Mach Number), and
density are calculated. The length scale is still accounted for in the grid, but instead of a
so—called characteristic length, a length scale of one meter is used (i.e., the grid is in terms
of meters). All of the information needed by the above relations is now available. By scal-

ing in this manner, the non—dimensional equations take the exact same form as the the di-
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mensional ones (i.e., Equation (2.17) with the vectors defined by Equations (2.18) through

(2.21) ).

Curvilinear Transformation

The Cartesian reference frame is useful for expressing the vector and tensor quanti-
ties of the governing equations in their respective component forms. However, this refer-
ence frame is not very practical for “real-world” problems. A grid that conforms to the
shape of the geometries involved is much more useful and greatly simplifies boundary
condition treatment. In using a body—conforming grid, the physical space of the problem
may be mapped to a simpler computational space (see Thompson, et al [23]).

The three—dimensional, time—dependent, curvilinear coordinates are defined in a

general form as

E=§8xyzt), n=nkxyzt), {=Lxyzt), t=t. (2.22)

By use of the chain rule, the following relations give the Cartesian derivatives in terms of

their curvilinear counterparts:

e

-9 9 9 9
_6r+§’a§+m8ﬂ+gta§ ’

9 _g 0 9 9
ax gxa§+77xa”+CxaC,
(2.23)
O _gdyp0 50
dy et Wom o’

0 _ g o9 g
&_52854_026174_@26@’

The partial derivative terms in Equation (2.23) are given by the expressions at the top of

following page.
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b= T g = 2] e =T e mye) &= T e — 2)
A N I A R RN A GRS
& =T oy —ywre) M= T e —xge) G =T (g — vz

and (2.24)

&= —xbx — yr&y — z:&,

Ny = — X Mx — Yoy — 2]z

Cr = — X8y — ery — z:C;.
The Jacobian, J, of the inverse coordinate transformation is defined mathematically as:
(x,y,2)

a(&,m.¢)
or (2.25)

J = det|

K

T = xelyizs = 2we) = velorzy = 2wvg) + 2w = e -

Physically speaking, the Jacobian represents the volume of a grid cell. The grid cell faces,
or surfaces, are given by Jky, Jky, and Jk, where k = E, 1, or €. Referring to the so—called
time metric terms (§;, 1, and ), these are the measures of the amount that the grid
changes with respect to time. For a stationary grid, therefore, these terms are zero.

In terms of these curvilinear coordinates, the governing equations (in their vector

form) become:

9Q [ oF L 3G | 8H _
ar+a§+an+a§_0' (2.26)

www.manharaa.com
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The vector of conserved variables, Q, in Equation (2.26) is defined below; this expression

is simply the product of the cell volume, J, and Equation (2.18):

Jo,
pu
— v (2.27)
0=pvl.
€
The flux vectors, F, G, and H are defined as:
U -
pul + &p — Ty
F = JpVU + §yp - ng , (2 28)
owU + &Ep — T§3 .
eU + plEat + &y + Ew) — uTy) — VT — Wl + O,

pV l
puV +np = T,y
AV +np —T
G=1J b=, ; (2.29)

owV +np — T,73

eV +p(17xu + ny + nzw) - uTﬂ1 - VT;;z - an3 + Oy

oW ]
puW + &p — Ty

_ vW+Cp—T
H = J|P WP &2 . (2.30)
pwWW + Cp — Ty

e +P(Cxu + Gy + Czw) - uT§1 - VTCZ - WT§3 + QC

www.manharaa.com
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Three new terms appearing in these transformed flux vectors are the contravarient veloci-

ties, U, V, and W. These velocity components are in directions normal to their respective

cell surfaces (i.e., &, 1, and €) and are given as:
U=§& +&5u+E5v+Ew

V=mn+nu+ny+nw

’ (2.31)

W=+ Gt + G + Eow .

The transformed viscous shear and heat flux terms are:
T, = kxtx + kyToy + KTy,
T,, = ke + kytyy + kitys
T3 = kytoe + Kyt + kT2,
O = kugx + kygy + kg,

The actual Cartesian shear stress and heat flux components

system are given on the following page.

(2.32)

where k =§,n, or C .

in the curvilinear coordinate

The diffusive terms given by Equations (2.33) and (2.34) will be referred to as the

“full 3-D” because they contain the fully expanded velocity and temperature derivatives,

fully expanded, that is, in terms of the curvilinear coordinates. When these terms are

placed in their respective places in Equation (2.32), a number of cross—derivative terms

will result. This is the more correct form of the equations, but it is also more expensive. On

some occasions, an approximation can be made to these diffusive terms such that the cross

derivatives are neglected. This approximation is known as the ‘“‘thin—layer” approxima-

tion (see Chen [22], or Cox [7] for further details) and may be viewed as similar to

Prandtl’s famous boundary layer approximation. However, the problems of interest do not

www.manaraa.com
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|

d
_(sza—g+ Negy + &2 c) (éya§+ MGy + & c)] (2.33)

(2.34)
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always lend themselves to this approximation, and, thus, the full 3—-D form of the equa-

tions is necessary. The present code has been modified so that an input parameter (logical)

is designated ‘“‘true” to use the full 3—D version, or *“‘false’ to use the thin—layer version.
Finally, the coefficients of viscosity and thermal conductivity are given as the sum

of their laminar and turbulent components; i.e.,
M=yt py and K =% +K.

The laminar components are primarily functions of temperature and are determined
through the use of Sutherland’s Law (see White [24] or Warsi [25] for descriptions and for
the relevant coefficients for some gases). The turbulent eddy viscosity, u, and eddy con-
ductivity, K, are determined by use of the algebraic turbulence model developed by Bald-
win and Lomax [26], which is based on Prandtl’s mixing—length theory. Though limited in
its applicability, as most turbulence models are, the Baldwin—-Lomax model has proved to

be reliable for many wall-bounded turbulent boundary layer flows.

Heat Conduction Equation

For heat conduction in a solid medium, the governing equation may be obtained by

simply setting V =0in Equation (2.3). This may be done due to the fact that the energy

transfer is purely diffusive in nature. The resulting conservation of energy equation is

— g = 2.35
= +V:qg=0 (2.35)

In this case, the energy variable is basically the same as the internal energy component
from the flow problem. This energy term may be expressed (per volume) in terms of the

specific heat of the solid and the temperature as

e; = pcT .

www.manaraa.com
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If the Cartesian coordinate system is chosen, then the coordinate—invariant form of Equa-

tion (2.35) becomes

aei+aqx+%+%

ST Tyt =0 (2.36)

In terms of conductivity, specific heat, and temperature, Equation (2.35) is

9 0 (0T _ 9 (,9T) _ 0 (,0T) _
E(pCT) ax (K ax) dy (K ay) 0z (K az) 0, (2.37)

which in the case of constant properties, p, ¢, and K is the familiar heat equation

2 2 2
T _ o &L T | T (2.38)
ot oxz  gy?  8z2

where a = thermal diffusivity = x/pc.

Scaling and Curvilinear Transformation of the Heat Equation
As already discussed in the case of the flow solver, the heat conduction equation
may require scaling to a non—dimensional form. The scaling relations from before can be
used unchanged for p, T, x, y, and z. Reference values for conductivity, K, and specific
heat, ¢, are defined in the input file. The non—dimensional time is slightly different from

before and is given as

Aot t
t = > s
L ref
or (2.39)
Kref t
t = T -
(ocL )ref

www.manaraa.com
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The transformation to the curvilinear coordinate system is similar to what was
done for the flow solver. When transformed to the curvilinear system, Equation (2.36) be-

comes

Qe 9 9Q
%(Jch) +—= O ¢

3E an + 5 =0. (2.40)

where

Qg - Jxl:gx(gx 0E + x((?h]; + Cx GC) + §y(§y E +7 yan + Cy )]

oT
- JKEZ(EZ E Zaﬂ + CZ_C)

Qn = —Jx[ﬂx(gxag + xg;'i' Cx C) + ﬂy(gy OF + ﬂyaﬂ + Cy ag):l
T

- Jm?z(gz ag + 772 677 + ng_)
Qg = - JKI:Cx(Ex 9E + 77x 677 + Cx C) C}’(E}’ o0& + 77)’ 677 )]
—_ JKCZ(‘SZ oE + 772 31] )

(2.41)

All derivative terms are retained for heat conduction within a solid (i.e., no thin—layer
approximation is made).

Heat conduction requires only the determination of temperature, and so this type of
problem is smaller, with respect to computational demands, relative to that of fluid flow.
Since only temperature is required to define the heat conduction field, a scalar variable
rather than a five—variable vector is all that is solved for at any given grid cell location.

Significantly less memory requirements and computational operations are a result.

www.manaraa.com



CHAPTER 111

NUMERICAL FORMULATION

The governing equations of the previous chapter are the mathematical expressions
of the physics involved in the problem of interest. Solutions of these equations can be
viewed as exact solutions to the problem, keeping in mind the assumptions made in the
formulation of the equations. However, actual exact solutions to these equations are limit-
ed to problems in which further simplifying assumptions must be made. So, for most prac-
tical problems, it is an impossibility to solve these equations in an ‘“‘exact” manner. There-
fore, numerical approximations are the means by which solutions can be obtained for
practical, real-world problems.

The finite—volume approach is used in this study as the basic numerical approach.
This methodology matches well with the control-volume approach of obtaining the gov-
erning equations. The domain of interest is discretized into grid cells; then for each grid
cell the value of the “Q-vector” is desired. The cell center is assumed to be the point at
which the Q—vector is calculated, though the value of Q is assumed to be constant over the
whole cell. The fluxes F, G, and H are assumed to be acting on the respective cell surfaces,
or faces, and are assumed constant over the given face. The governing vector equation,

when spatially discretized, becomes

5C AeanAL + 6 (F)YARAL + 8(G)EAL + 8,(H)Ean =0 . (3D

19
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The terms AE, Am, and AT may be taken to be unit values with an appropriate choice of

curvilinear coordinates; Q, F, G, and H are those vectors defined in the previous chapter.
Also the operator &) = (*)111/2 — (¥)1_1/2. Since the Q-vector is assumed to be at the cell
center, the grid index is assumed to be located there also; therefore, the index of 1 £ 1/2 is

associated with cell faces.

Implicit Algorithm and Numerical Flux

Numerical algorithms using the time—marching technique may be employed for
both steady (d/dt = 0) or unsteady (d/dt # 0) flow problems. In the former case, the time
variable serves simply as an iteration parameter; in the latter case, it represents the actual
physical time (or time—step in the discretized sense). Such algorithms fall typically into
one of two categories: explicit or implicit. By choosing the implicit approach, an algo-
rithm with a higher stability bound is generally achieved, though at a higher computational
price per time step iteration.

Using a 15%-order, backward difference to discretize the time derivative and recog-
nizing the values of AE , An, and AT as defined above, Equation (3.1) becomes (in an

implicit sense)
AQ n+1 n+1 +1 _
+ 0,F + (5 G + o0, """ =0 (3.2)

where AQ™ = Q™! — Qn, superscript n => time step value. The flux terms are, in general,
nonlinear in nature and, thus, require a linear approximation to obtain a solution. The com-

mon linearization with respect to time is (using F as an example)

n+1 _ fn n
Frtl = F +(6Q) A0" + 0(4r)’ (3.3)

www.manaraa.com
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Assuming for reasons of simplicity that the problem is one—dimensional in space, Equa-

tion (3.2) is re—written as

A
% * (Fn+1)i+1/2 B (Fn+1)i—1/2 =0 (3.4)

In general, the numerical flux acting on a cell face is a function of the Q—vector in the
neighboring cells (e.g., Fiy12 = F(Q;,Qi+1) and Fi_j» = F(Q;,Qi-1)). Taking this fact into
account and applying the linearization technique described in Equation (3.3) to Equation

(3.4), the basic form of the implicit numerical algorithm is given as:

I, aF?+1/2 3 an"l—l/z o + aF:l+1/2AQ oF} 1/2AQ” B
At BQ;’ ann i Qz " i+1 aQn i—
F = Flap=—0f" (3.5)

For problems in two or three spatial dimensions, the above equation is simply expanded
using the same technique (a summary of this may be found in Vanden and Whitfield [28]).

The convective part of the flux vector is based on the classic wave equation of
physics. Wave propagation has a natural directional dependence associated with it. There-
fore, since the convective fluxes are modeled as wave propagation, these, too, can be seen
as having directional dependence. If one divides, or splits, the convective flux vector in
accordance with its direction of wave propagation, a physically accurate representation of
the flux at a cell face is determined; this general technique is commonly referred to as “‘up-

winding”’. The splitting of the flux vector, F, is written as

F=F*t +F~
The same notation is used to represent the splitting of the G and H vectors. The F* sub—

vector consists of flux terms with a wave propagation in the positive coordinate direction,

and the F~ sub—vector has terms with negative directional propagation.

www.manaraa.com
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Referring to Equation (3.5), the terms of “dF/0Q” are n x n matrices (n = 3,4, or 5
for 1-, 2—, or 3-D flow problems) and are known as flux Jacobians. A common naming
convention for these terms is Aj; 12 = (0F/0Q)i11/2 and Ai_1p = (dF/0Q)i_1/2 . The wave
speeds and directions mentioned in the previous paragraph are determined from the eigen-
values of the flux Jacobian, A. The “split” flux Jacobians are then defined as At =
dF*t/80Q and A~ = 0F/0Q. Further details of the actual splitting of the flux vectors and the
split flux Jacobians have been presented a number of times (see Arabshahi [1], Janus [21],
Chen [22] for the ideal-gas flows and Cox [7] and Cinnella [29] for chemically reacting
flows) and will not be repeated here. A detailed derivation of the so—called analytical flux
Jacobians may be found in Appendix B of Belk [4].

For the present code, Cox made use of a splitting of the diffusive components of
the flux vectors, based on the work of Cinnella [29], in order to form viscous flux Jaco-
bians. This particular technique allows for the viscous Jacobians to be combined with the
inviscid (convective) Jacobians such that the coefficient matrix (i.e., the left-hand side)
maintains the so—called “LU” structure. Details of these discretized viscous Jacobians
can be found in Appendix E of Cox [7]. In the past, the viscous fluxes were treated explic-
itly. These viscous Jacobians allow for the implicit treatment of the viscous fluxes, if so

desired.

Returning to Equation (3.5) and re—writing it in terms of A* and A,

n
I + - - + -
(A_r + Ai+1/2 - Ai—1/2) 407 + Ai+n1/2A 01— Ai_”l/zAQ;’_1 = - R" Q9
where R" = §;F" . For the purpose of brevity, this may be re—written as

(A%—J’ S AT - + A" -)nAQ;’ - — R 3.7)

(X3

where ” implies the matrix—vector multiplication of the appropriate terms. Again,

Equations (3.5) through (3.7) have assumed a problem in just one spatial dimension. As
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mentioned earlier, to expand the implicit algorithm to two— or three—dimensional prob-
lems, the same concepts and notation are used as that for Equations (3.5) through (3.7).
The split flux sub—vectors are Gt , G~ and H* , H™ for the j and k grid directions, respec-
tively. The accompanying flux Jacobians are B* = 90G*/9Q and B~ = 0G/9Q, Ct =
dH*/0Q and C- = 9H/0Q. In the compact form of Equation (3.7), a three—dimensional

problem may be written as

I _ _ B n
(o voa=vapsopsoct o faog = -
with R"=06,F" + 6].G” + 6, H" (3.8)

The right-hand side of Equation (3.8), often referred to as the “‘steady-state resid-
ual”, represents the difference in flux between the respective faces of a given grid cell.
Therefore, the flux must be constructed at each face in order to calculate this difference.
The methodology for constructing the numerical flux at the cell faces will be briefly dis-
cussed below. Details have been covered numerous times, so only a summary will be giv-
en. The diffusive fluxes are comprised of the product of a diffusive coefficient (viscosity
or thermal conductivity, for example) and the derivative of velocity or temperature at the
cell face. A second—order, central difference approximation to this derivative may be
constructed by simply taking the difference of the cell-centered values of velocity or tem-
perature in the cells adjacent to the cell face. This is a relatively easy task; the cell-cen-
tered values are known and a simple subtraction is all that is required.

Constructing the convective flux at the cell face is not quite as simple, due to pos-
sible discontinuties. Again, the value is known at the cell center, so the challenge comes in
calculating a reasonably accurate value at the cell face. And in keeping with the upwind
philosophy of spatial differencing, the direction of wave propagation should be accounted
for in the flux calculation. A method originated by Godunov in 1959 [30] was a concept in

which a discontinuity is assumed to exist at each cell face. This initial discontinuity in de-
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pendent variables gives rise to a 1-D Riemann (shock tube) problem; the basic structure of
such a problem consists of an expansion fan, a shock wave, and a contact discontinuity.
The propagation of these wave structures, in addition to the known cell-centered values, is
then used to obtain a flux at the cell face. This method can give exact solutions to the prob-
lem in question. However, when used for nonlinear problems (as in the present case), the
method is quite expensive. A good basic description of the principles of this method may
be found in Hirsch [31].

A number of methods based on the basic concept proposed by Godunov have since
been developed; unlike Godunov’s scheme, some of these newer methods do not attempt
to solve the exact problem, and are referred to as approximate Riemann solvers. Perhaps
the most popular is the method developed by Roe [32]. Often called Roe’s flux differenc-
ing scheme, it approximates the exact problem by means of a special linearization. Based
on this linearization technique, average values for the dependent variables may be calcu-
lated in terms of the cell-centered values on either side of the cell face. These Roe—aver-
aged variables may then be used to construct the flux at the given cell face. This method
works very well for many cases, but it is not perfect. It has only a first—order spatial accu-
racy, and it may allow the calculation of non—physical solutions (also known as expansion
shocks). Since the origin of the Roe scheme, a number of methods have been developed to
improve on its faults, especially the one of non—physical solutions. The methods of Quirk
[33] and Harten, Lax, and van Leer (HLLE) [34] are two examples. Hirsch [31] again
gives a good basic explanation of Roe’s scheme, and the essential details may also be
found in Simpson [5] or Arabshahi [1] for ideal gas flows and Cox [7] for equilibrium
reacting flows.

As already mentioned, Roe’s method gives numerical flux values of first—order
spatial accuracy. For higher—order approximations, corrections are added to this first—or-

der flux. The total-variation—diminishing scheme of Osher and Chakravarthy [35] was in-
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corporated into the present code by Arabshahi for higher spatial accuracy. Also, the use of
so—called flux limiters is needed for the higher—order scheme near shocks. The flux limiter
is required to act against an over— or under shoot of the higher—order solution at the shock.
The limiter basically reduces the solution to first order at the shock by “‘chopping™ off an
over— or under shoot. By doing this, non—physical oscillations are prevented from forming
in the region near the shock and then corrupting the solution. A brief description of the

higher—order method and limiters may be found in [1].

Modified Two—Pass Scheme and Symmetric Gauss—Seidel Iterations

In order to solve the linearized system of equations represented by Equation (3.8),
the modified two—pass scheme of Whitfield [36] is employed and will be briefly discussed

in the following. First, define three matrix operators:

n

_d + - 8 + -
DZj,k ~ Ar + (Ai+ 1/2jk Ai—l/ZJ,k) + (Bi,j+ 1/2k Bi,i—l/Z,k)

n
+ (Ci:;,k+ 12~ Ci},k—1/2) ; (3.9)

n
. — + + +
LZj,k 4 QZ;',k - (Ai -1 /2,j,kA Qi —1jk + B ij—1 /2,kA Qi,j -1k + Ci,j,k— 1 /zA Qi,i,k - 1) >

(3.10)

n
Ul A9, = (Ai_-i-l/Z,i,kAQHl,j,k + Bij+1/264Qij 1 t Cij124Q5 1+ 1) :

3.11)

Equation (3.8) may now be written as

n
(Di,,-,k "= L + Uk ) 407, = — R}, . (3.12)
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One may then perform an approximate factorization on the above equation similar to that

of Briley and McDonald [27] or Beam and Warming [37]:

-1
[DZ];(—LZ,, ]D [D:f]k Uiik ]AQ,Jk Rijk - (3.13)

Equation (3.13) may be viewed as the same form of the LU factorization from basic linear

algebra. That is to say
[LUK =b . (3.14)

This system of equations is solved in two steps (passes):

Ly =b forward substitution,

Ux =y back substitution.

In the same sort of way, Equation (3.13) is solved in two passes:

[D ifk z,; k ] [Qz,; k] - RZi,k forward pass
(3.15)

n
[Di,i,k + Ui,j,k ] [A QZI’(] = DZi,inri’k backward pass
where DZj,in,i,k -~ RZj,k + [ ijk ][Qu k] .

Equation (3.15) is the modified two—pass algorithm. This two—pass sequence of
operations will give an approximate solution to the system of equations; the solution is
approximate because, again, Equation (3.13) is an approximate factorization of the origi-
nal system of equations. However, an iteration process that may be viewed as a symmetric
Gauss—Seidel sequence can easily be made from Equation (3.15). The iterative sequence if
advanced to convergence (i.e., AQ = 0) would remove the factorization error mentioned

above.

www.manaraa.com



27

A single iteration step of the symmetric Gauss—Seidel (SGS) method for solving
systems of linear equations is practically the same as that given by Equation (3.15). A for-
ward pass with a block lower—triangular coefficient matrix is followed by a backward pass
with a block upper—triangular coefficient matrix. This process is repeated for either some
specified number of iterations or until some convergence criterion is met. Therefore,
Equation (3.15) is converted to a SGS sequence by placing the modified two—pass scheme
within a loop and executing this loop for a certain number of times. Equation (3.15) as a
SGS iterative sequence is then written as:

n 2p+1 2%
[Di,j,k - Li,,',k] [A ol k] = — R, — [UZ]k ' ][A Q?,j,k] ;
(3.16)

n 2p+2 2p+1
[Di,j,k + Ui,j,k] [A Q?,,',k] =~ Rt [LZ;',k ][A Z/,k]

b

0
where [A Zlk] = [0]

and p =0,1,2,....SGS LIMIT .

If the SGS limit is set to zero, then Equation (3.16) is exactly the same as the modified

two—pass of Equation (3.15).

Newton’s Method for Nonlinear Equations

Newton’s method is an iterative technique for solving nonlinear equations. An im-
portant advantage of this method is its rapid convergence property. Assuming that an ini-
tial value of the iterative sequence is sufficiently close to the solution, the sequence will
rapidly meet a given convergence criterion for many problems. A good theoretical discus-
sion of Newton’s method (for systems of equations) may be found in chapter five of Den-

nis and Schnabel [38] (chapter two covers this for a single variable).
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For the case of finding the root of a scalar function of a single variable (f(x) = 0),

Newton’s method is simply

xk
Axk = — f,( k) ) (3.17)
fE)
where Ax* = x¥+t1 — xk . k = Newton iteration parameter.

When desiring the solution or root of a vector function of a vector variable, [F(x)] = [0],

Newton’s method results in an expression similar to that of Equation (3.17):
— - 1 —
Azk = - [F(fk)] [F(J?k)] . (3.18)

where [F’ (i)] is the Jacobian matrix, [0F/dx]. Calculating the actual inverse of the Jaco-
bian could be quite difficult, so a re—arranging of Equation (3.18) is needed to avoid this

difficulty. Therefore, Equation (3.18) is re—written as

F(e)art = - F(#") . (3.19)

which has a form similar to that of the implicit algorithm described above. Comparing

Equation (3.19) to the one—dimensional example of Equation (3.7):

Ax <—>AQn+1k Qn+1k+1 Q;z+1,k ,

n+1lk
F(#) < [—+ S AT - +0A" ] , (3.20)
n+1k n
_ F(fk) - _R;z+1,k - _ [% + 6[Fn+1k:| ’

where [Qi]n+1,1 _ [Ql]n

and k=12,....NEWTON LIMIT .
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There is an important difference between Equation (3.20) and Equation (3.7); the discre-
tized time derivative is now included on the right-hand side. The general time—dependent
equation, Equation (3.2), is a nonlinear vector equation equal to the zero vector, just as
[F(x)] = [0]. Therefore, the time—derivative approximation must be included in addition to
the flux differences, §;F. For two— or three—dimensional problems, one can simply include
the additional terms as shown in Equation (3.8).

For any given time step, a Newton sub—iteration procedure is performed to drive
the term AQ™1X toward zero. As AQ™1k — 0, Ri+L.k — (0 which, as shown by Equa-
tion (3.20), means that the discretized governing equation is satisfied. The beauty of this
entire formulation, including also the embedded symmetric Gauss—Seidel procedure, is
that a couple of input parameters can control whether a steady or unsteady problem is to be
solved, or whether the modified two—pass or symmetric Gauss—Seidel procedure is used to
solve the actual linear system. For example, suppose a solution to a steady—state problem
is desired. One may specify the “NEWTON LIMIT” to be 1, and Equation (3.20) then
reverts back to Equation (3.7). In that case, the time step serves essentially the same pur-
pose as the iteration parameter, k, from above. For time—dependent problems, simply set
NEWTON LIMIT > 1, so that sub—iterations may be performed for each time-step itera-
tion. The actual value required for the Newton sub—iteration limit is, in general, dependent
on the actual problem itself. However, often times a value of 3 to 5 will suffice. Details of
this overall formulation may be found in Whitfield [36] and a good, brief presentation in

Vanden and Whitfield [28].

Heat Conduction Algorithm

An implicit algorithm for the heat—conduction solver may be constructed in practi-
cally the same manner as that for the flow solver. Again, a control-volume (finite—volume)
approach is used, such that the time rate of change of the quantity of interest (thermal ener-

gy, in this case) is balanced by the flux of thermal energy across the surface boundaries of
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the volume. The basic governing equation, Equation (2.40) , is repeated here for conve-

nience:
00: 0Q, 90
9 & n & _
or in discretized form:
A(JpcT)
T + 51Q§ + 6]Q;7 + 6kQC = 0 . (322)

The effect of thermal expansion is not being taken into account for this work, so
the grid cells and their Jacobians (cell volume, J) will be constant. Moreover, directional
dependence of thermal conductivity is not considered. Also, the density and thermal prop-
erties will be assumed to be constant for all of the problems considered here. The govern-
ing heat equation will then be linear with respect to the dependent variable, temperature.
Since the equation is linear, the components of the coefficient matrix are comprised entire-
ly of grid metric terms (refer again to Equation (2.41)), and once calculated, may be saved
for the remainder of the time. For the case of a nonlinear problem, Newton’s method may
be used in essentially the same manner as that for the flow solver, and the coefficient ma-
trix will contain the temperature—dependent terms of specific heat, ¢, and conductivity, K.
The coefficient matrix will then need to be calculated each time step and, for that matter,
each sub-iteration.

As an example, the one—dimensional, transient heat equation, with the assumptions

mentioned above, is written as

n+1

AT
pc( A%> x [J(gg vE+ 52)(3—?)] - [J(s,% +E+ 52)(%)]
i+1/2

—0. (323

i-1/2
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The discretized space and temporal temperature derivatives in Equation (3.23), as well as

the time step, are given as:

), e (@),
(ag i+1/2 au 95 );_ 1/2 i tim

and AT? =T —T0 ; A7 = (3.24)

To make Equation (3.23) easier to follow, define the following coefficient matrix compo-

nents:

+ = ][(g% + g}% + gg)]i+1/2 and A = J[(g% + g}% + Eg)]i—l/Z - (3.25)

In this case, the “ + " and *“ - superscripts are used simply to help identify which face, is
being referred to relative to the cell center; no wave direction is implied here. Another
thing to keep in mind is the fact that, this being a one—dimensional problem, no cross—de-
rivative terms exist. In general, two— and three—dimensional problems will have grid met-
ric terms including these cross derivatives. These additional terms would be defined in a
manner similar to the AT and A~. Using the above result, Equation (3.23) is expanded and

re—written as

AT/
pc( Y ) + KA AT — kAT — AT TR = 0L (3.26)

Converting Equation (3.26) to the so—called “residual” form (similar to that of the flow

solver):

n

where R! = KAi+(T Tl+1) + KAi_(Ti - Ti—l)
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A symmetric Gauss—Seidel iteration is used here again for solving the linear sys-
tem of Equation (3.27). As with the flow solver, this procedure is comprised of multiple

sets of forward and backward passes through the system

[Dl- + Li . ]n[AT:.’]ZP—H _ R? B [U:’ . ][AT;’]ZP ’
D+ U Tfar ™ = —rew [ Jan" L o
p =0,1,2,..,SGS LIMIT ,

with Disf]—i_+x(Ai+ +Ai_);LE_7CAi_; U= —xA],

and |4 T;l]o = [0] .

The implicit formulation of the linear heat equation is very stable, and good results have

been achieved. Some of these results will be shown later in verification test cases.

Boundary Conditions

The boundary conditions for the flow solver are of the characteristic—variable type
(CVBC). The principle of these conditions is to determine the values of the phantom—cell
variables by way of the direction of wave propagation (i.e., into or out of the boundary).
The possibilities of subsonic inflow or outflow and supersonic inflow or outflow exist for
“permeable”” boundaries. For solid wall, there is an impermeable CVBC or zero—pressure
gradient (ZPG) condition assuming inviscid flow (i.e., non-zero tangential velocity at a
solid boundary). For viscous flow, the no—slip condition is imposed (i.e., both normal and
tangential velocity components are zero). In the original code developed by Arabshahi [1]
and the more recent one by Cox [7], the thermal boundary conditions were limited to either
the adiabatic—wall condition or the constant—temperature—wall condition. These have been

modified to include specifications of spatially varying temperature or heat flux or the con-
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dition of thermal coupling (i.e., conjugate heat transfer) with the solid wall. A good de-
scription of the implementing if CVBC’s may be found in Whitfield and Janus [39].

The means for specification of the boundary conditions for arbitrary geometries
was developed in [1]. This method allows for a flexible construction of a multi—block
grid; that is to say there is, in general, no restriction on how the grid is constructed (there is
the one restriction of point—to—point continuity across block—to—block boundaries). As
long as the boundary conditions are correctly specified in the input file, the code will apply
the appropriate conditions (CVBC, solid wall with slip, no-slip solid wall, or block—to—
block) to the corresponding boundary surface. This same methodology is used for the heat
conduction solver and the coupling, if desired, of the flow solver and conduction solver.

The boundary conditions for the conduction solver consist of constant or variable
temperature or heat flux and thermal coupling, either with other solid grid blocks or with

fluid grid blocks. This thermal coupling will be discussed further in the next chapter.
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CHAPTER 1V

THERMAL COUPLING OF GRID BLOCKS

The impetus of this work is to expand the present CFD flow solver capability by
including the physical effects of thermal communication between a fluid and a solid
boundary. A study of physics of thermal energy transport has been necessary for this, as
well as the consideration of numerical issues, especially at the interface. Like the fluid, the
geometry of the solid may require multiple grid blocks to be constructed. Also, the solid
may be composite in nature; i.e., the solid may consist of multiple materials. Accommo-
dating this latter case requires multiple grid blocks within the solid geometry. Paralleliza-
tion, though not attempted in this work, is yet another scenario requiring multiple grid
blocks. Block—to—block communication of the flow solver alone has been addressed by
Belk [4]. This work will address the block—to-block communications between the flow
solver and the heat conduction solver and within conduction solver. Though the conduc-
tion problem is, in general, simpler than the flow problem (only a scalar variable is solved
for at each grid cell), communication among grid blocks can offer problems.

The first topic to discuss is the criteria which must be met in order to successfully
communicate (thermally) between grid blocks. Since each block is worked on separately, a
coupling is necessary to insure accurate solutions. The two main conditions to be met are
continuity of heat flux across the block interface and continuity of temperature values on

the interface. That is, (with subscripts 1 and 2 to represent the two sides of an interface):
@)1 =0@"),; T, =T,
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The two conditions from the previous page are imposed on each grid cell along the
common interface. Though the heat flux and temperature are continuous across the bound-
ary, the temperature derivatives normal to the boundary will be discontinuous for solid—
fluid interfaces and for composite solid—solid interfaces (see Figure 4.1 below). Of course,
for a solid—solid interface with like material on both sides of the interface the temperature
derivatives, too, will be continuous. For the case of discontinuous temperature derivatives,
the ratio of these derivatives may be determined from the heat flux continuity (again, see
Figure 4.1). An assumption that needs to be stated at the beginning is that of perfect con-
tact along the interface of composite walls. That is, there are assumed to be no regions,
even on a microscopic level, in which the two materials are not in contact. In reality, this is
often not true. This assumption allows the continuity of heat flux to be applied at each cell

along the length of the interface.

" " oT
g —t— g (50);
I «=—4t—» I; T
(&),
A A
interface interface
" = " ﬂ = ﬂ (aT/an) K _1
i =as=n() = nlf), ()
2

Figure 4.1 Continuous Heat Flux and Temperature (left); Discontinuous
Temperature Derivatives (right)
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Solid—Solid Block Coupling

The case of solid—solid block interfaces, with the blocks composed of both like and
different materials, will now be discussed. The coupling of such blocks along their inter-
faces can be found entirely within that part of code written strictly for conduction prob-
lems. This conduction solver has been incorporated into the original CFD code to work
either independently of, or in cooperation with the flow solver.

It should be noted that the temperature derivatives of each block at the interface
may differ by orders of magnitude, depending on the ratio of the respective conductivities.
This fact can certainly affect the grid spacings on the respective sides of the interface, in
that one side may require much tighter spacing to adequately resolve the derivative. Ade-
quate resolution of the temperature derivative is obviously necessary for accuracy, but grid
spacing may also be required to help with stability.

With regard to the transient behavior of conduction within a solid, the property of

thermal diffusivity is of key importance. Thermal diffusivity, a, is defined as
_ K
@ =5c - 4.1)

The product of pc in the denominator is often referred to as the thermal capacitance or
thermal ““mass”. It plays a role similar to that of inertial mass in Newton’s 2" law; i.e., the
greater the value of thermal mass, the more time is required for the thermal effects to pene-
trate through the solid. For a composite wall, this means that one one side of the interface
will “advance” at a different rate than the other, thermally speaking. The difference in
these rates of advancement depends directly on the ratio of the respective diffusivities. In
other words, for a given time step interval, the temperature field of one side of the inter-
face will change by a greater, or lesser, amount than the other, depending on the ratio of

diffusivities across the interface.
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The diffusivity can also be viewed to act in much the same way as the wave speed
for the convective terms. The dimensionless CFL number for wave—type equations is de-
fined as the ratio of (a*t)/L, where “a” is some wave speed, “t” is time, and “L” some
value of length; similarly the dimensionless Fourier number, Fo, of diffusion problems is
defined as the ratio of (o¥t)/L2. For both computational wave and diffusion problems, the
CFL and Fourier numbers, respectively, are measures of how fast a particular problem is
being advanced; these two numbers may also be gauges of stability. Consequently, thermal
diffusivity is very important for transient problems, as well as steady—state problems that

are solved using the unsteady equation, as is often the case.

Composite Slab

For the composite solid wall, the code is constructed such that the lower—-numbered
block uses the interface temperature supplied by the higher—numbered block as a Dirichlet
boundary condition. Based on this interface temperature and that of the center of the cell
adjacent to the interface for the lower—-numbered block, a 15t-order, one-sided difference
is calculated to approximate the temperature derivative at the interface. Using this approx-
imated value for the temperature derivative and the conductivity, K, of the material in the
lower-numbered block, a heat flux is calculated and placed in the proper memory location
for use by the higher—numbered block as a Neumann boundary condition. The memory
allocation for the block—to—block conduction problem is set up in the same manner and
using the same array as that formed by Arabshahi [1] for block—to—block situations within
the flow solver.

Again, the temperatures used for this block—to—block communication are from the
previous time step, so an explicit (i.e., lagged) boundary condition exists. Because of this
“explicitness’ at the interface, a stability restriction will exist, limiting the size of the time
step to be used. As an example, the orders of accuracy along a constant—i interface are

[(AT), (AE), (An)?, (AT)?]. Increasing the time accuracy from 1% to 21d—order by means of
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3—step, backward differencing can allow for increased values of the time step size while
maintaining numerical stability.

The general algorithm for the conduction problem on a composite wall or slab is

shown in the figure below.

Do ib = 1, no. of blocks
Obtain interface BC'’s (temp. for lower no. block, q” for higher no. block)

Obtain “regular” BC'’s

If lower no. block then
Calculate q” and send to higher no. block

End If
Calculate RHS of equation
Calculate LHS of equation, if necessary
Do isgs = 1, SGS LIMIT
Forward sweep
Backward sweep

End Do
T+l = Tn 4 ATN

If higher no. block then

Send to T"*! lower no. block at interface for next time step
End If
End Do

Figure 4.2 Basic Algorithm for Explicit Coupling of Composite Solid Blocks

Homogeneous Slab

A homogeneous wall is defined as one of like material, and, thus, like thermal
properties. In this case, the primary reason for dividing the grid into multiple blocks is that
of geometrical complexity. Even though the single block grid would be best (assuming the
computer has sufficient memory), the geometry often makes such a grid impractical. The
question of block—to—block interfaces then becomes quite important.

The same procedure described in the previous section and illustrated in Figure 4.2
could be used for the homogeneous wall as well. However, because of the common materi-

al on both sides of the interface, there will be no discontinuity in temperature derivatives at
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the block—to—block boundary. Therefore, one might think that there is no need to pack grid

points perpendicularly to the boundary for the purpose of improving accuracy. As it turns
out, packing at the boundary is still needed. The problem of heat conduction in a solid is a
boundary—value problem; i.e., the solution in the domain will be influenced by all bound-
aries of the domain. A block—to—block boundary treated explicitly means there is a ‘“‘barri-
er’”” within the domain which keeps all of the grid cells from being correctly influenced by
all of the boundaries. And the commonality of thermal properties means this diffusion pro-
cess progresses at the same pace for both sides of the interface. This combination of ex-
plicit block—to—block boundary and same rate of advance of the physical problem makes
for a very “‘unforgiving’ situation. Any errors in calculation of the interface heat flux/tem-
perature are quickly amplified; a non—physical solution results in relatively few time—step
iterations. So, a very tight packing may be required in order to make the interface solution
stable; either that or a time step value that is possibly so small as to be impractical.
Interface grid packing with like material on either side is undesirable, especially
with a structured grid. As with fluid blocks, this packing can possibly “propagate’ to the
outer grid boundary. A way to avoid the requirement of tight grid packing at the block—to—
block boundary is through the choice of the temperature used for the boundary condition
of the interface’s lower—numbered block. Suppose for a moment that the block interface
did not exist. The cell boundary coinciding with the block interface would use the temper-
ature at the cell centers on either side of the cell boundary and a 2"d—order, central—differ-
ence approximation to calculate the heat flux at the cell boundary. Assume, now, that the
interface boundary is again present; rather than use an interface temperature supplied by
the higher—numbered block, use the temperature from the cell centers adjacent to the inter-
face from this higher—numbered block. This will still result in an explicit boundary, so
there will still be the so—called conditional stability. However, the stability is increased

some while avoiding an excessively tight grid spacing along the interface boundary.
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Both of the previously discussed ways to treat the interface boundary of a homoge-
neous wall or slab are based on the procedure for the composite wall (i.e., the algorithm in
Figure 4.2), and both of the possible treatments result in an explicit block—to—block
boundary and an accompanying stability problem. A method in which a homogeneous sol-
id block could have implicit interface boundaries would be most desirable. As it turns out,
such a method is possible while making a relatively minor modification to the algorithm
presented in Figure 4.2.

Let us first look at a single-block, 2-D slab such as that on the left side of
Figure 4.3. The i—coordinate increases from left to right, the j—coordinate from bottom to
top. Therefore, the forward sweep is “to the right and up”, the backward sweep ‘“‘to the
left and down”. For the single block case, the coefficient matrix of the LHS will apply to
all grid cells in the interior domain; the entire domain is solved simultaneously. Suppose
now that the single-block grid is divided into two blocks. The forward sweep is done on
block 1, but instead of calculating a heat flux at the interface and passing that to block 2 for
use as a boundary condition, the AT? values for the cells adjacent to the interface are
passed to block 2. The code then goes to block 2 and completes the forward sweep of the
grid using the information passed from block 1. This procedure is then reversed for the
backward sweep. The backward sweep is performed on block 2, and the AT™ values for its
cells adjacent to the interface are passed to block 1. The code goes to block 1 using the
information from block 2 and completes the backward sweep of the grid. The entire proce-
dure constitutes a single Gauss—Seidel iteration, which is executed for the prescribed num-
ber of times.

The procedure described above can be accomplished without much effort by re-
arranging the looping structure of the algorithm of Figure 4.2. The position of the Gauss—
Seidel and blocking loops is reversed; i.e., the Gauss—Seidel loop is now ‘“‘outside”, rather

than “inside’ the blocking loop. This new algorithm is shown in Figure 4.4. A very simi-

www.manaraa.com



41

lar procedure was described by Belk [4] for block—to—block communication of fluid
blocks (without the Gauss—Seidel iteration, only one forward—backward sweep combina-
tion was performed at that time). Also, a communication with Pankajakshan [40] revealed
that a similar procedure is used for a parallelized, structured flow solver, similar in that the
values passed from block to block are from the most recent Gauss—Seidel iteration (this, of
course, is necessary in a parallel code since the numerous blocks cannot “wait’ to receive
the most recently updated data from all of the neighboring blocks). So the procedure just
described is based somewhat on work that has been done by others for different purposes

than that of thermal block—to—block communication.

=1 Ip=imax»
Jmax ji=jmax ja=jmax
backward backward |backward
block 1 | block 2
. forward =1 |/ forward 4d .
i=1 i=imax =1 ij=imax

Figure 4.3 Implicit Treatment of Multiple—Block Grids

In summary, the block—to—block thermal communication of solid grid blocks can
be prone to problems. The heat conduction problem is one in which all points within the
domain are related, to a greater or lesser degree, and any hindrances to adequate commu-
nication may result in numerical instability. The block—to—block boundaries are usually
the source of these instabilities understandably, and the greatest attention has to be given to
these boundaries. The ratio of thermal conductivities plays a role in the amount of grid

packing required normal to the boundary; the ratio of thermal diffusivities gives a measure
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of how ““fast™ the respective blocks change or react to changes in temperature, heat flux,

and so on.

Fluid—Solid Block Coupling

The case issues involved in the thermal coupling of fluid and solid grid blocks are
to a large degree the same as that of the composite wall described previously. Continuity of
wall heat flux and temperature are maintained, but temperature derivatives at the interface
are discontinuous; often differing by orders of magnitude. For example, the conductivity
of aluminum, often used for aerospace structures, is 237 W/(m—K) at 300K; air at the same
temperature and atmospheric pressure has a conductivity of only 0.0263 W/(m-K). The
ratio of the conductivity of aluminum to that of air in this case is just over 9000. Even for
a non—-metallic solid with a much lower conductivity, such as fused quartz (¥ = 1.38
W/(m-k) ), the conductivity ratio is still in excess of one order of magnitude, at approxi-
mately 52. Thermal diffusivities, on the other hand, often differ by less than an order of
magnitude (97.1e~06 m?%/sec and 22.5e—06 m?%/sec for aluminum and air, respectively, at
the same conditions). All of these values are taken from Appendix A of Incropera and De-
Witt [41].

Grid packing on the fluid side of the interface is usually going to be much tighter
than on the solid side, especially if the fluid is in a gaseous state. Of course, tight point
spacing and relatively high grid—point density are usually required for viscous flows any-
way, especially for high—Reynolds number flows (i.e., flows with very thin velocity
boundary layers and, thus, very large velocity derivatives at the interface).

The question to be addressed is which type of boundary condition, heat flux or
temperature, is applied to which side of the fluid—solid boundary. In the case of the com-
posite wall interface, the lower—numbered block used the temperature supplied from the
higher-numbered block as a boundary condition. The lower—-numbered block calculated a

wall heat flux and supplied that valued to the higher—numbered block for its boundary con-
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dition. Block numbering does not determine the type of interface boundary condition for
the respective blocks of the coupled fluid—solid case. The code is constructed such that the
solid blocks supply the interface temperature to the fluid blocks; the fluid blocks calculate
a wall heat flux and send that value to the solid blocks for use as their boundary condition.
The sequential nature of the code means that grid blocks are worked on in an as-
cending order; i.e., the block loop starts with block 1 and progresses to the “n™"’ block.
The previous paragraph described how the fluid and solid blocks communicate in the
coupled problem. Like the composite wall, these interface conditions are explicit in nature.
For these conditions to be consistent (or ‘“‘synchronized” as described by Belk [4]), all
fluid grid blocks need to be worked on before any of the solid blocks. Certainly the most
straightforward way of doing this is to have all fluid blocks numbered smaller than any
solid block. This numbering scheme is easily accomplished for relatively small, simple
grids. For grids of higher block number counts and greater complexity the requirement of
all fluid blocks to have smaller numbers than all solid blocks could become impractical.
An easy modification is made to the existing code so that an ““identification’ is
given to each grid block with respect to its type; each block has a logical variable that iden-
tifies it as a fluid block (fluid flow with no thermal coupling to a solid boundary), a fluid/
solid block (fluid flow with thermal coupling to a solid boundary), or a solid block (heat
conduction coupled either to other solid blocks or to fluid/solid blocks). This identification
takes place in the initialization subroutine, while reading the boundary conditions of the
respective blocks. A block loop is marched through within the main (time) iteration loop
of the code, and all the fluid blocks are worked on before any solid blocks, using this iden-
tification variable. A second block loop is then executed (within the same time iteration
loop), but only the solid blocks are worked on in this loop. A Newton sub—iteration loop, if
necessary, is placed between the time loop and the block loops, as shown in Figure 4.5, for

example. Therefore, all fluid blocks, and the associated wall heat fluxes, will be calculated
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at any coupled fluid—solid interfaces before any solid blocks are executed, regardless of
block numbering. This identification system also means that uncoupled problems (i.e., ei-
ther the flow solver or the heat conduction solver alone) may be simulated while using the
same code. The type of problem to be worked on is described entirely within the input file
by the definition of the boundary conditions. A greatly simplified version of this algorithm

is shown in Figure 4.5 on the following page.

Do time—step iteration
Do Newton iteration

Do isgs = 1, SGS LIMIT
Do ipass = 1, 2
Do ib = 1, no. of blocks
If (isgs=1 and ipass=1) then

Obtain BC'’s

Calculate RHS of equation
Calculate LHS of equation, if necessary

End If
If (ipass=1) then
Obtain AT" from lower—numbered block(s)

Forward sweep
Pass AT" to higher—numbered block(s)

Else If (ipass=2) then
Obtain AT" from higher—numbered block(s)

Backward sweep
Pass AT to lower—numbered block(s)

End If
End Do (block loop)

End Do (ipass loop)
End Do (isgs loop)

T+ =T+ AT"

End Do (Newton loop)
End Do (time—step loop)

Figure 4.4 Basic Algorithm for Implicit Coupling of Homogeneous Solid Blocks
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Do time—step iteration
Do Newton iteration

Do ib = 1, no. of blocks
If fluid block then
Simulate fluid flow
End If
End Do
Do ib = 1, no. of blocks
If solid block then
Simulate heat conduction

End If

End Do
End Do (Newton Loop)
End Do (time-step loop)

Figure 4.5 Basic Algorithm for Explicit Coupling of Fluid and Solid Blocks
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CHAPTER V
RESULTS AND DISCUSSION

Validation of the Heat Conduction Solver

The heat conduction solver is a new addition to the overall CFD code and needs to
have some degree of validation before use in conjunction with the flow solver. Some rela-
tively simple test cases on one— and two—dimensional grids will be used to demonstrate
that the conduction code is working properly. These test cases all assume constant thermo-
physical properties, which give a linear heat equation. Also, these tests have analytical

solutions against which comparisons can be made.

One—Dimensional Test Cases

The first test case is that of a one—dimensional, transient conduction problem. This
test case is an example problem taken from the text of Incropera and DeWitt [41]. The
example in the text is that of a semi—infinite slab of pure copper exposed to a constant
radiative heat flux boundary condition. The analytical solution of such a problem is
known, and will be presented later.

For the purpose of code validation , a model of a ““bar” of rectangular cross section
is used instead of the semi—infinite slab. This bar is horizontal with the left face having the
radiative heat flux boundary condition and the remaining five grid surfaces treated as adia-
batic. Though this bar is of finite length, it is reasoned to behave like the semi-infinite
slab, at least for some period of time after the start of the problem.

Since this bar model is of finite length, the analytical solution for the semi-infinite

slab is not directly applicable. The analytical method for solving the non—homogeneous,
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boundary—value problem in a finite, Cartesian space is taken from the text of Ozisik [42];
this method is based on the Fourier Integral Transform method of solving partial differen-

tial equations (PDE’s). The general expression of this problem is:

2
19T _ 32T , 81 .

a ot ox2 K ’

—xla +hT=f@);x=0,1t>0,

5.1
LT =f0; x=L,>0, (5.1)

T=Fkx) ; 0sx=<L,t=0.

0 L
where Kp, K, hy,hoy f1,15 are prescribed boundary properties and conditions

The general analytic solution for this problem is:

t

o]

T(x,1) = z ~ul - K(Bmox) - | FlBm) + f et - At )t | . (5.2)

t'=0

There are a number of terms in the above equation that need to be further defined.
The integral transform method works by transforming the PDE to an ordinary differential
equation (ODE) in terms of some new transformed variable. This new ODE takes the form
of the Sturm-Liouville eigenvalue problem; the B,,’s are the eigenvalues of this problem.
The term K(Pm,X) is defined as the transform kernel and depends on the combination of
boundary conditions (as do the f,,’s) for the given problem. The general ‘“‘boundary condi-

tions of the third kind”’ above in Equation (5.1) mean that there are nine possible combina-
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tions of K(Bn,x) and B’s (see pages 50-51 of Ozisik [42] for a listing of these combina-

tions). A volumetric heat source (or sink) is represented by g(x,t). The terms F(B,,) (initial

condition) and A(B,t) (boundary conditions) are defined as

L
F(ﬂm) = K(ﬂm,x’) - F(x")dx'
0

R

A separate code was written to evaluate Equation (5.2). Results from this code are

——
I —

(5.3)

taken to be the analytical solution that will be compared to the results from the heat—con-
duction solver. For this specific test case, the following assumptions are made to the gener-
al problem of Equation (5.2):

gx,)=h;=hy =1, () =0,

K =K, =1,

5.4)

f; (t) = cl = constant,

F(x) = ¢2 = constant.
By specifying ®; and x, to equal 1, temperature derivatives rather than heat fluxes are
given at the boundaries. The boundary condition combination is that of a Neumann condi-
tion (BC of the second kind) at each boundary. This combination means the transform ker-

nel will be

Kipn) = \[Beosipu) 5 Kipyr) = [Loosp)

where the eigenvalues are the positive roots of

sin(f,L) = 0
cBm = an , m=0,1,2,..
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The remaining specifications of physical length of the rectangular bar, diffusivity,
and initial and boundary conditions for the example problem are
bar length, L, = 1 m,

k =401 W/(m-K), c = 385 J/(kg-K), pP= 8933 kg/m3 (pure copper),

a = 117e-06 m?%/sec,
Qoo =300kW/m?=>dT/dxl—o =1 = ~748 K/m,
Tinitial = 293.15 K (20 °C).

These values along with the desired locations (x and t) for the temperature are input for the
approximation of the analytical solution, approximate in that the summation cannot be car-
ried to infinity. The question of the value, N, at which to truncate the summation was an-
swered by simple trial-and—error type iteration. Various values for N ranging from 100 to
10000 were tried. The N—value of 10000 was picked, based on the fact that by this point no
appreciable difference was noticed by increasing N.

A simple grid of size 101 x 2 x 2 was used by the heat conduction code. The spac-
ing was uniform, giving a grid—cell length of 0.01 m; the grid width and height were set to
0.075 m. A time step of 1 second was used, resulting in a grid—cell Fourier Number of 1.17
(based on a length of 0.01 m and the above physical properties); this is just over twice the
explicit limit of 0.5. The test lasted for 120 seconds. The time and space accuracies are 15—
and 2"d—order, respectively, for all cases, unless otherwise noted.

The analytic solution of one—dimensional heat conduction within a semi—infinite

slab with constant heat flux, q& , at the exposed boundary is given by:

25 % 2\ _ 4o
T(x,1) = —— » ) - efe 2\7& + Titial » (5.5)

w
where etfe w=1—erfw; erfwzi e Vv .
J
0
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A set of tables will now be constructed comparing the results from the above equation with

those of Equation (5.2) and the heat—conduction solver at three different spatial locations

and five different points in time (24—second intervals, t = 0 not included). Values of the

error function, erf, for use in evaluating the exact solution are taken from Appendix B.2 of

Incropera & DeWitt [41]. The temperature values are in degrees Celsius.

Table 5.1 Comparison of Analytical and Approximate Solutions for 1-D, Transient Con-

duction Test Case; x = 0 m from Heat-Flux Boundary

time —> 24 sec 48 sec 72 sec 96 sec 120 sec
semi— slab 64.74 83.26 97.48 109.5 120.0
finite bar 64.72 83.25 97.47 109.5 120.0
numerical 64.60 83.17 97.40 109.4 120.0

Table 5.2 Comparison of Analytical and Approximate Solutions for 1-D, Transient Con-

duction Test Case; x = 0.1 m from Heat—Flux Boundary

time —> 24 sec 48 sec 72 sec 96 sec 120 sec
semi—oo slab 24.73 34.68 44.57 53.85 62.50
finite bar 24.74 34.69 44.59 53.86 62.51
numerical 24.88 34.74 44.60 53.85 62.50

Table 5.3 Comparison of Analytical and Approximate Solutions for 1-D, Transient Con-

duction Test Case; x = 0.2 m from Heat—Flux Boundary

time —> 24 sec 48 sec 72 sec 96 sec 120 sec
semi— slab 20.12 21.73 25.17 29.46 34.24
finite bar 20.13 21.81 25.18 29.49 34.25
numerical 20.18 21.91 25.27 29.56 34.31
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Table 5.4 Comparison of Analytical and Approximate Solutions for 1-D, Transient Con-

duction Test Case; x = 0.3 m from Heat—Flux Boundary

time —> 24 sec 48 sec 72 sec 96 sec 120 sec
semi— slab 20.00 20.11 20.63 21.84 23.52
finite bar 20.00 20.11 20.69 21.90 23.69
numerical 20.00 20.14 20.74 21.96 23.73

The entries in each of the above tables show very good agreement between the ex-
act values and the approximate results. The results from the approximation of Equation
(5.2) suggest that this method will serve well as the analytical solution for tests that follow.
Results from the conduction solver indicate that the code works properly for this test case.
The results are given to four significant figures to help show just how closely the different
methods compare. Accuracy to this number of significant figures is usually not available,
three figures of accuracy is more common. Many temperature measurement devices have
resolution to one decimal point, at best, so these results agree well within that range of
measurement accuracy. One thing to note, however, is the fact that the temperatures from
the approximation of Equation (5.2) and those from the heat—conduction solver are higher
than those of the semi—infinite slab solution, except at x = 0. This difference is more no-
ticeable at points farther from the left boundary and at the larger time values. This suggests
that the adiabatic right boundary (x = 1 m) is having some slight effect; this effect would
certainly become more pronounced if the simulation were continued. Further comparison
of the solution of Equation (5.2) and the conduction solver is shown in the Figure 5.1.

A great amount of detail is being given to this relatively simple test case. The pur-
pose is to demonstrate that both the approximation of Equation (5.2) and the heat—conduc-
tion solver compare well with a mathematically exact solution. Other tests will compare
only the results of the approximate solution of (5.2) (or its two—dimensional ““version’) to
those of the conduction solver, with the approximate solution of (5.2) then considered to

be the analytical or exact solution.
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Temperature vs. Length

alpha = 117E-06 m**2/sec
120 ¢ T T

O initial
\ 024 sec
100 + \ <48 sec -
A\ AT2 sec
“\‘ 96 sec
L 120 sec

Temperature (C)

X (m)

Figure 5.1 Temperature vs. X for 1-D, Transient Test Case; Fourier Transform
Method (Symbols) and Heat—Conduction Solver (Curves)
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Figure 5.2 Temperature vs. X for 1-D, Steady—State Test Case; Fourier Trans-
form Method (Symbols) and Heat—Conduction Solver (Curves)
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Another simple test was conducted using the same grid and problem parameters
from before. This new test was run until a steady—state was reached. The previous tran-
sient test, if continued, would never reach a steady—state; the thermal effects would finally
penetrate to the right boundary at x = 1 m and the temperature within the bar would then
continue to increase. For this new test, a heat flux was specified to be exiting the right
boundary and of the same magnitude as that entering at the left boundary. The test goes
through a transient and reaches a steady—state which gives a linear plot of temperature vs
bar length. The test run was for 1800 seconds, with results presented at intervals of 360
seconds (see Figure 5.2). Though the temperature range is not very realistic, the plots
make physical sense, with each side mirroring the other about the center.

The initial validation of the heat—conduction solver for both a transient and a
steady—state, one—dimensional problem is complete. The results from the conduction solv-
er and from the approximated Fourier integral transform method (approximated by trunca-
tion of the infinite series) compare very well with the exact solution of the transient case.
The next test cases are meant to further validate the conduction solver by simulating tran-

sient and steady-state problems in two space dimensions.

Two—Dimensional Test Cases
The Fourier integral transform method will be treated as the exact solution for the
following cases. Expanding this to higher dimensions is relatively straightforward and the
similarities with the one—dimensional expression are obvious. Referring to Chapter Two of
Ozisik [42], the general two—dimensional, time—dependent, non-homogenous boundary—
value problem and the corresponding analytical expression for temperature within the do-
main are given on the following page. Like the one—dimensional case, K(f,x) and

K(vy,y) are the transform kernels, the B,,’s and v,’s are the eigenvalues, F(B,,Vy) accounts
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2 2 t
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—x36y+hT f360) 5 9y=0,1t>0,
1c4a + hT = fyx,t) 5 y=5b, t>0,
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Y
b
— X
0 a
T(x,y,t) = Z ze—atﬁzﬂz- K(Bmx) - K(vay)- - - (5.7)

m=0n=0
t
FlBmyn) + J B2 +v2) . A(Bmynt' )dt'
=0

for the initial condition and A(f,,Vn,t) accounts for the boundary conditions. F(Bm,vy,) and
A(Pm,Vn,t) (for g(x,y,t) = 0) are defined on the next page.
A steady—state problem will be the first two—dimensional test case. The physical

domain is a square 1 m x 1 m with g(x,y,t) = K; = K, = fg(x,t) = 0 and hy = hp = 1; also,
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F(ﬂm: Vl’l = ﬂm: K(Vl’lay ) F(x >y )dx dy
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f1(y,t) = fo(y,t) = 300 K, f3(x,t) = =50 K/m, ®3=1%,=1and h3=hyg=0. These parameter
values indicate that the boundaries of x =0 and x = a (i.e., 1) are constant Dirichlet condi-
tions of 300 K. The boundaries of y = 0 and y = b are constant Neumann conditions with a
temperature derivative of —50 K/m (out flow of heat) at y = 0 and an adiabatic condition at
y = b. The initial condition is a uniform temperature of 300 K. Since ¥, = K, = 0, the first
two terms in the above definition of A(B,Vp,t") will be undefined. A substitution is made
whenever K = 0 and requires the derivative of the transform kernel with respect to the spa-
tial variable associated with the particular boundary. For the present example, the two re-

quired substitutions are defined as

(K(ﬂmax)) _ l(dK(ﬂmax)) and (K( m,x)) - _l(dK(ﬂm’x))
" =0 hl dx x=0 "2 x=a h2 dx xX=a
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The boundary conditions of this example are Dirichlet—Dirichlet in the x—direction and

Neumann—Neumann in the y—direction. The resulting transform kernels are:

K(ﬁm’x) = \/gsin(ﬁmX),
K(vp,y) = \/%cos(vny) ; K(Vo,y) = \/%COS(VO),) (5.9)

where the eigenvalues are the positive roots of

sin(Bp,a) =0 and  sin(v,h) = 0

ﬁm = Tﬂ » m = 031’2,--- s Vn = % , N = 0,1,2,... (510)

This example will reach a steady state because of the (constant and balanced)
boundary conditions. Temperature plots vs the x—direction (at some constant y—direction
value) will be symmetric about the centerline of the slab. Also, to further demonstrate the
effect of the magnitude of thermal diffusivity on the physical time scale of the problem,
the diffusivity for copper will be increased by a factor of 1000 from 0.000117 to 0.117
(m?/sec). Diffusivity values of this magnitude are not realistic for most common metallic
solids (please refer to Appendix A of Incropera and DeWitt [41]). However, this is of no
consequence for the purpose of this test case in that no comparisons are being made to an
actual experiment. This test is only for further verification of the heat—conduction solver,
and so good agreement between the solver and Equation (5.7) is all that is sought.

Another small code (similar to that for Equation (5.2)) was written to approximate
Equation (5.7). In the one—dimensional case, the summation was truncated at m = 10000.
For this two—dimensional case, the summations over m and n will each be carried to 5000.
This will compromise the solution a little, but it is felt necessary in order to have reason-
able computer run times. For example, if the summations over m and n are both carried to
10000, then the inner most loop (summation over n) will be executed 108 times for each

point in space and time where a solution is desired. A run time of approximately 16 min-
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utes on an SGI R10000 processor for 21 different values of x, 3 different values of y, and
only 1 value of time, t. Summing m and n to 10000 would increase this run time by rough-
ly a factor of 4, so that about an hour would be required to get temperature results for each
value of time, with the same number of x and y values.

The heat—conduction solver uses a grid of size 71 x 71 x 2 to discretize the 1 m x 1
m physical domain; equal spacing gives grid cells that are approximately 1.43 cm x 1.43
cm with a depth of 1 cm. A minimum time step of 0.01 seconds is used to march the solu-
tion to its steady state. Thermal diffusivity is not an input, per se, for the conduction solver.
The density, specific heat, and thermal conductivity are input for the given solid material.
The conductivity and specific heat of aluminum (167 W/(m-K) and 883 J/(kg—K), respec-
tively) were used, and the density was adjusted to a value of approximately 1.62 kg/m to
match the diffusivity value for the analytical method above. A diffusivity of 0.117 m¥/sec,
time step of 0.01 sec, and cell length L = 0.0143 m results in a Fourier number of about
5.73, which is roughly 23 times the explicit-limit value of 0.25 for two—dimensional prob-
lems. The boundaries at x =0 and x = | m are specified to be at the constant temperature of
300 K. The boundary at y = 0 is a constant heat flux of —8350 W/m? (this will match the
temperature derivative specified for the analytical problem); that at y = 1 m is an adiabatic
wall.

The plots for this steady—state example are shown in the next three figures. Each is
a graph of temperature vs x—direction at constant y—direction values of 0, 0.5 and 1.0 m,
respectively. Each curve or group of symbols is for a different point in time; these plots
show the transient of this problem as it advances to the steady state. As before, the symbols
represent the analytical results (Equation (5.7)), and the solid curves are for the conduction
solver results. All of the plots have the same minimum and maximum values of tempera-
ture to give a visual impression of the relative change experienced at the different y—direc-

tion values within the slab.
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Temperature vs X (Y =0)

Steady—State Solution; alpha = 0.117 m**2/sec
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Figure 5.3 Temperature vs. X for 2-D, Steady—State Test Case; Fourier Trans-
form Method (Symbols) and Heat—Conduction Solver (Curves); Y =0 m

Temperature vs X (Y = 0.5 m)

Steady—State Solution; alpha = 0.117 m**2/sec
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Figure 5.4 Temperature vs. X for 2-D, Steady—State Test Case; Fourier Trans-
form Method (Symbols) and Heat—-Conduction Solver (Curves); Y = 0.5 m
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Temperature vs X (Y =1 m)

Steady—State Solution; alpha = 0.117 m**2/sec
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Figure 5.5 Temperature vs. X for 2-D, Steady—State Test Case; Fourier Trans-
form Method (Symbols) and Heat—Conduction Solver (Curves); Y = 1.0 m

The greatest change in temperature takes place at the boundary of y = 0, due to the
boundary condition; heat is flowing out of the slab, so the temperature drops to a minimum
at the midpoint of the x—direction. Similar patterns are seen aty = 0.5 m and y = 1 m, but to
lesser degrees. Very little change is seen at the boundary of y = 1 m due to its adiabatic
condition. In all plots, the majority of the change takes place in the first three seconds; the
temperature drop is less than one degree from three to ten seconds. The solutions of the
conduction solver disagree with the specified the condition of 300 K at the x =0 and x = 1
m boundaries. This is due to the simple averaging (implemented for the plotting software)
of the cell-centered and interface temperatures surrounding a given boundary node. The
plots at y = 0.5 m and y = 1 m agree better at these boundaries, because there is much less
temperature change at the x—boundaries of these y—locations. Also notice that the tempera-
ture derivatives at the x—boundaries interior to y = 0.5 m and y = 1 m are much smaller

than at y = 0. Since the two x—boundaries are maintained at a constant temperature, the
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heat flux will adjust accordingly, resulting in the smaller magnitude of the x—wall tempera-
ture derivatives.

In summary, these results show good agreement between the results of conduction
solver and Equation (5.7). The maximum discrepancy appears to be no worse than 0.5 de-
grees in magnitude at any point, and this seems acceptable considering the use of first—or-
der time accuracy and a moderate time—step for the conduction solver.

Next an unsteady, two—dimensional case was run. The parameters used were simi-
lar to those before, the exception being the boundary condition at x = 1 m. Before, this
boundary condition was set to a constant temperature of 300 K; this will be changed to a
Neumann condition that is a sinusoidal function of time (same at all y—locations). The
magnitude of the derivative will be the same as that for the y = 0 boundary from the prior
case, with a frequency of 1.25 Hz (i.e. dT/dxl=; = 50 sin ot K/m , @ = 2.57 sec™1).

The change in the boundary condition will also mean a change in the analytical
expression for T(x,y,t). The transform kernels remain unchanged, as do the v—eigenvalues;

the change is to the f—eigenvalues. The new [—eigenvalues are the positive roots of:

cos(fma) = 0 = By = [2m + Dx|/(2a) , m = 0,1,2,... (5.11)

Yet another small code to approximate Equation (5.7) is needed as a result of the new
time—dependent boundary condition. The summations will again be stopped at 5000 for
both the m and n eigenvalue parameters.

The same grid will be used for the conduction solver. The x = 1 m boundary condi-

tion was changed, with the heat flux at this boundary set to q\:, | <=1 = 8350 sin wt W/m? ,
w = 2.57 sec™!. The time step was reduced from 0.01 to 0.002 seconds, resulting in a

Fourier number of about 1.15, and the test run from t = 0 to t = 5 seconds.
Figure 5.6 through Figure 5.8 show temperature is plotted vs x—direction at y—di-

rection values of 0, 0.5 and 1 m, respectively. The pattern of the plots is similar at these
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different y locations, with the most noticeable effect at the y = 0 location and a diminishing
effect away from this boundary. As before, each plot uses the same temperature scale to
help show this decreasing effect at the interior y—values.

At time values of 1 and 5 seconds, sin (wt) = 1; therefore the heat flux will be exit-
ing the boundary at its maximum magnitude (8350). This is visible in each plot by the
equal negative slope for both of these time curves. The opposite is true at t = 3 seconds
where sin (wt} = —1 giving a heat flux of maximum magnitude entering the boundary. The
boundary is adiabatic at the times of 2 and 4 seconds, where sin (wt) = 0. Both the 2— and
4— second temperature curves are very nearly perpendicular to the y—axis at x = 1. The
results of the analytical and numerical solutions agree very well, and they also behave as
expected with respect to the specified boundary conditions.

A time step of 0.002 seconds was used by the conduction solver for this case. A
quick test case was run to see the effect of a much larger time step: this step value was
increased to a value of 0.02 seconds, resulting in a Fourier number of approximately 11.5.
The code behaved well with respect to stability, but the time accuracy of the results is no-
ticeably (and expectedly) worse than before. Figure 5.9 illustrates this point for the y =0
boundary.

The good results from both the 1-D and 2-D test cases suggest that the heat—con-
duction solver works well. The implicit nature of the solver provides good numerical sta-
bility; this was demonstrated in both cases with Fourier numbers significantly larger than
the explicit limit. The conduction solver used only one grid block for each of these test
cases. The next step is to address the thermal block—to—block communication if more than

one grid block is required for a solid region.
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Temperature vs X (Y =0)

Transient Solution; alpha = 0.117 m**2/sec
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Figure 5.6 Temperature vs. X for 2-D, Transient Test Case; Fourier Transform
Method (Symbols) and Heat—Conduction Solver (Curves); Y =0 m,
Time Step = 0.002 Seconds

Temperature vs X (Y = 0.5 m)

Transient Solution; alpha = 0.117 m**2/sec
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Figure 5.7 Temperature vs. X for 2-D, Transient Test Case; Fourier Transform
Method (Symbols) and Heat—Conduction Solver (Curves); Y = 0.5 m,
Time Step = 0.002 Seconds
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Temperature vs X (Y = 1 m)

Transient Solution; alpha = 0.117 m**2/sec
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Figure 5.8 Temperature vs. X for 2—-D, Transient Test Case; Fourier Transform
Method (Symbols) and Heat—Conduction Solver (Curves); Y = 1.0 m,
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Time Step = 0.002 Seconds
Temperature vs X (Y =0)
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Figure 5.9 Temperature vs. X for 2-D, Transient Test Case; Fourier Transform
Method (Symbols) and Heat—Conduction Solver (Curves); Y = 0 m,

Time Step = 0.02 seconds
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Block-to—Block Communication for Composite Slab

The same general two—dimensional grid from the previous section will be used to
investigate the block—to—block communication of both the composite and homogeneous
slabs. The same basic boundary conditions from before will also be used. The two key
factors at the block—to—block boundaries are the thermal diffusivities and the grid spacing
on each side.

As mentioned in the previous chapter, the thermal diffusivity is a measure of how
rapidly thermal effects spread through a material. A composite slab is composed of at least
two different materials, and, consequently, at least two different diffusivity values. This, of
course, means that each different part or component of the slab evolves at a different rate,
depending on the diffusivity value. The ratio of the respective diffusivities at a given
boundary determines the physical behavior of the problem, moreover it directly affects the
numerical stability.

Again, the same simple 1 m x 1 m geometry from before will be used; any changes
will be in grid size and spacings at the interface, the location of which is x = 0.5 m. The
material properties of silver and commercial bronze will be used for this case. The values
for the material properties are: Kg...= 429 W/(m-K), csjiver = 235 J/(kg-K), Pgiper=
10500 kg/m3 and Kpronze= 22 W/(m=K), Cpronze = 420 J/(kg—K), Py onze= 3300 kg/m?3.
These values give diffusivities of approximately Ojjyer = 1.74e—04 m?%/sec and Opronze =
1.4e-05 m?/sec. As before, the boundaries of x = 0 and x = 1 m are kept at a constant
temperature of 300K; the y = 0 boundary has a heat flux of -8350 W/m? and an adiabatic
condition is prescribed y = 1 m.

The basic procedure for block—to—block communication of composite slabs was
described in the previous chapter. Lower—numbered blocks take boundary temperatures

from higher—numbered blocks and calculate a heat flux at the boundary. This heat flux is
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then passed to the higher-numbered block for use as its boundary condition. The ratio of
diffusivities at an interface is Ry, = Qjower / Ohigher -

As a first example, suppose that Ry > 1; the diffusivity of the lower—-numbered
block is then the greater of the two and that block will experience a greater change than the
higher—numbered block, assuming the same grid size on both sides of the interface for
some given time step. In this methodology the lower—numbered block is the “initiator™ of
action at the interface; the higher—-numbered block takes the supplied boundary condition
and then provides a “response’ (in the form of a interface temperature) to the lower block.
For the case of Ry > 1, the lower—numbered block provides a boundary condition that the
higher block can not adequately respond to. The temperatures along the interface will di-
verge quickly to non—physical values. The greater the value of Ry, the worse is this prob-
lem.

Another way to look at this situation is in terms of the grid—cell Fourier number at
the interface, and this is where interface grid spacing (and thus cell size) comes into play.
Initially, the grid spacings were specified as being the same at the interface (though non—
uniform for the grid block itself). By increasing the spacing in the lower—numbered block
(of higher diffusivity), the grid—cell Fourier number is reduced. The lower the block 1
grid—cell Fourier number relative to that of block 2, the more stable the interface commu-
nication was found to be.

Assume block 1 to consist of silver and block 2 of bronze; the value of R, is then
approximately 12.4. A grid spacing of 0.001 m is given for either side of the interface with
equal grid sizes of 41 x 71 x 2; an initial time—step value of 0.2 seconds 1s specified. The
calculation aborts in less than 10 iterations after a negative (absolute) temperature is calcu-
lated. Reducing the time step by a factor of 10 still fails to get the solver past 10 iterations.
In fact, continuing to make order—of-magnitude reductions in the time step gains little.

However, by increasing the size of the cell on the silver side of the interface, some success
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is found. By increasing the interface spacing of the silver block to 0.024 m (the maximum
i—dimension value is also reduced from 41 to 36), a time step of 0.2 could be used. Of
course, this increasing of cell size should be held somewhat in check so as to maintain as
much possible accuracy of the temperature derivative at the interface.

Plots of temperature vs x—direction, for various y—direction values and a given
time, are shown in Figure 5.10 through Figure 5.12. Pictures of temperature contours for
two different times are given in Figure 5.13 and Figure 5.14. All of these figures give a
good view as to how each side of the interface progresses and the abrupt change in slope of
the temperature plots at the interface.

As a short side note, there is nothing special about the value of 0.2 for time step.
The purpose here is to gain some idea of what is necessary to get a relatively high value of
time step and still maintain numerical stability with these explicit block—to—block bound-
aries. As will be seen later, the time step values required for fluid—solid thermal coupling
are often governed by the fluid aspect of the problem; this is certainly true in high—speed
flows. If time step values on the order of 0.01 seconds or greater can be obtained for solid
block—to-block grids, then numerical stability at these boundaries should be of little con-
cern in fluid—solid coupling problems. The required time steps for the fluid aspect of the
problem are often at least an order of magnitude smaller than that for the solid.

Assume now that the blocking arrangement from the previous page is reversed,
with block 1 being bronze and block 2 being silver. The value for Ry is now less than one.
Assume, too, that the grid spacings on either side of the interface are again equal (0.001 m
with grid sizes of 41 x 71 x 2). Block 1 will pass a heat—flux boundary condition to block 2
as before. In this case, however, block 1 has the smaller diffusivity and will naturally prog-
ress at a slower thermal rate compared to block 2. That is, the grid—cell Fourier numbers of

block 1 are already lower than those of block 2 without any changes in cell size needed.
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Simulation runs with time steps of 1 second were successful using 1'—order time accuracy.
Time—step runs of 2 seconds were successful by increasing time accuracy to 2"—order.
Another favorable aspect of the bronze—silver blocking arrangement has to do with

adequate resolution of the interface derivatives. Since the conductivity of bronze is much
less than that of silver (i.e., R = Klowcr/Khighcr < 1), the temperature derivative on the

bronze—side of the interface will be much greater than that of the silver side. Therefore, if
sufficient grid spacing is specified for resolution of the derivative on the bronze side, equal
spacing on the silver side will be more than enough for resolution of its derivative.
Another small test was run in which the spacing on the silver side of the interface
was set to double that of the bronze side (i.e., 3.001 m for bronze, 0.002 m for silver). This
test was just to see what, if any, effect would result, since the equal spacing of 0.001 m on
the silver side was not required from the derivative resolution standpoint. The stability de-
teriorated. and a smaller time step than before was required. Doubling the grid size re-
duced the Fourier number of the silver—side grid cells. which is a less stable situation.
Since the action of the previous paragraph destabilized the interface, another small
test was tried in which the silver—side grid spacing at the interface was the reduced from
0.001 m to 0.0005 m. Now the Fourier number of the grid cells of the silver block (at the
interface) was increased by roughly a factor of 4 over that of the 0.001—spacing, thus driv-
ing the respective Fourier numbers farther apart to the more stable condition. These results
were quite interesting; time step values as high as 20 seconds were executed using 1%'-or-
der time accuracy with no problems. Figure 5.15 through Figure 5.17 compare the results
of bronze—silver blocking arrangement carried at a time of 1,000 seconds and three differ-
ent values of the y—direction. The first run used a time step of 1 second (1,000 iterations)
with equal grid spacing of 0.001 m on both sides of the interface. The second and third
runs are at time steps of 10 (100 iterations) and 20 (50 iterations) seconds, respectively.

The results do not seem to ditfer greatly, considering the difference in time step size.
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Temperature vs X; t = 300 seconds

Composite Slab; Silver (left) and Bronze (right)
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Figure 5.14 Temperature Contours for 2-D Silver-Bronze Composite Slab at
Time = 300 Seconds
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Temperature vs X; y = 0.071 m
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Figure 5.16 Temperature vs. X for 2-D Bronze-Silver Composite Slab at Y = 0.071
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Figure 5.17 Temperature vs. X for 2-D Bronze-Silver Composite Slab at Y = 0.143
m, Time = 1000 Seconds
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The previous example using bronze and silver as the two materials gives a relative-
ly large difference between both the diffusivities and conductivities. Another example us-
ing materials with properties closer in value will be examined to gain some 1dea of this
effect. The materials of aluminum and copper are chosen for this case. The nominal prop-
erty values are: Keopper =401 W/(M=K}), Ceopper = 385 J/(kg—K), Peopper = 8933 kg/m3 and

K =237 W/(m-K), Cajuminum = 903 J/(kg-K), P juminum = 2702 kg/m3. The result-

aluminum
ing diffusivity values are approximately Ocopper = 1.17e-04 mZ%/sec and Cyumingm =
9.7e—-05 m?/sec. The ratios of both diffusivity and conductivity (copper/aluminum) are be-
tween | and 2. With diffusivities so close in value, the respective Fourier numbers at the
interface will be closer in value than previously. The same grid size as before is used, as
well as an equal interface grid spacing of 0.001 m. Also, the initial and boundary condi-
tions from before are used. The aluminum block is designated block 1, the copper one
block 2.

The bronze—silver example demonstrated that the greater the difference in Fourier
numbers at the interface, the more stable the problem. The diffusivities, and thus naturally
the Fourier numbers, for this case of copper and aluminum are much closer than before.
This fact suggests that the maximum achievable time steps will be smaller than previously,
and this is indeed the case. A time—step value of approximately 0.05 seconds turns out to
be the maximum attainable for this grid and its accompanying initial and boundary condi-
tions with 1-order time accuracy (lower—numbered block is aluminum, higher—-num-
bered one is copper). Increasing the time accuracy to 2"—order allows the time step to be
increased to roughly that of 0.075 seconds. Figure 5.18 through Figure 5.20 shows that the
thermal effects are progressing, as expected, at almost the same pace throughout the solid.
Also, the change in the temperature plot at the interface is much less abrupt due to the

relatively close conductivity values.
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Temperature vs X;y =0.143 m

Composite Slab; Aluminum (left) and Copper (right)
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Figure 5.20 Temperature vs. X for 2-D Aluminum—Copper Composite Slab
atY =0.143m

In order to increase the difference in Fourier numbers, the grid spacing on the cop-
per—side of the interface was changed from 0.001 m to 0.0005 m as in the previous exam-
ple. This change provided practically no increase in the maximum time step. The copper—
side spacing was further reduced to 0.00025 m. This allowed the time step to be increased
to 0.075 seconds using 15'—order time accuracy and 0.125 seconds for 2"—order. This is an
improvement, but still it shows that these two materials behave so alike one another that
increasing the time step by changing cell size is of limited practical use.

The above example of the aluminum—copper composite slab illustrates the in-
creased difficulty in making simulations without having to resort to extremely small time
steps. The closer the diffusivity ratio, Ry, gets to 1, the more difficult is the task of finding
a useable time step. The “worst—case scenario’ for this block—to—-block communication

methodology is then that of a composite slab consisting of materials having equal diffusi-
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vities (which is highly unlikely), or that of the homogeneous slab, which will be addressed

next.

Block—to—Block Communication for Homogeneous Slab

Based on the previous discussion, one could infer that the homogeneous slab, con-
sisting of more than one block, would be very difficult to treat. Indeed, small time steps
and very tight spacing at the block—to—block boundary might be required. If the time step
is specified to be very small, the code may be used in an explicit manner; however, this
may not be practical. Tight grid spacing is not necessarily required due to the fact that the
temperature derivative will be continuous (because of equal conductivities) at a block—to—
block boundary within a homogeneous slab. Tight grid spacing is not desired, if not need-
ed.

A slight modification of the composite—slab methodology was tried and met with
some success. A boundary heat flux was still calculated by the lower—numbered block and
passed to the higher—numbered block for use as its boundary condition. And this heat—flux
calculation was still based on a temperature (from the previous time—step iteration) pro-
vided by the higher—numbered block to the lower-numbered one. However, in this case
the higher—numbered block passed the cell-center temperature from its interface grid cells
rather than a temperature on the interface itself (briefly described in Chapter 4). The
approximation of the temperature derivative used for calculating the heat flux boundary
condition becomes a second—order central difference, using cell-center temperatures on
each side of the interface. Grid—cell Fourier numbers for this method are still rather limited
for stability reasons, however. This methodology may be used without necessarily having
to alter grid spacing at the the block—to—block interface (especially if the solid is being
coupled to a fluid flow requiring small time steps).

The method described above was used when first testing the coupling of the heat—

conduction solver to the flow solver, and this way of treating the interface worked fine for
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the time steps involved (these values were small due to the fluid part of the problem).
There was still a desire to reduce the concern of time—step limitations due to possible solid
block—to—block interfaces, since it is felt that a significant number of fluid—solid problems
will involve a homogeneous solid. A basic description of a different method of block cou-
pling within the Gauss—Seidel iteration loop was given in the previous chapter. The
strength of this method is that it should give the same results as if there were only one solid
grid block; this allows for larger time—step values.

As a quick reminder, this “Gauss—Seidel coupling”™ primarily consists of reversing
the orders of the grid—block loop and the Gauss—Seidel loop (i.e., the block loop is now
contained within the Gauss—Seidel loop rather than vice—versa). Also, the part of the solu-
tion vector (that is, the AT™ values for each grid cell) along the interface is passed from
block to block instead of heat—flux or temperature boundary conditions.

Testing of this procedure was accomplished by using the same basic two—dimen-
sional slab grid (along with the same initial and boundary conditions) as that for the 2-D
validation of the conduction solver, since both analytical and single—block numerical re-
sults are already available for comparison. The 1-block grid size from the validation case
is 71 x 71 x 2; this will be divided at the x = 0.5 point into two blocks of 36 x 71 x 2
(evenly spaced). Only the unsteady problem from above will be discussed (time step =
0.002 seconds with a Fo=1.15).

The comparison is made to the numerical results from the validation case. If the
code works correctly, there should be no difference between the 1-block and 2-block re-
sults. The 1-block case compared very well with the analytical solution, so comparison of
the numerical results of the 1-block and 2-block cases should be sufficient. Figure 5.21
through Figure 5.23 show both the 1-block and 2-block results, with the 1-block numeri-
cal results represented by the symbols and the 2-block results by the curves: the solutions

are the same. The values plotted in these figures are cell-centered values and have been
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averaged to get values for the grid points. This is done for post—processing software and
the present averaging at boundaries causes the slight “’kink’ in the curve at the interface.
The actual cell-centered temperatures written to the re—start files (after 2500 time—step
iterations) have practically no difference between the 1-block and 2-block cases.

Temperature vs X (Y =0)
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Figure 5.21 Comparison of 1-Block (Symbols) and 2—Block Implicit Coupling
(Curves) Solutions for 2-D Transient Test; Y = 0 m, Time Step = 0.002 Seconds

Another quick test was conducted to help further demonstrate the stability. Just as
before in the validation case, the time step was increased by an order of magnitude to 0.02
seconds (Fo = 11.5); the results are given in Figure 5.24. In this figure, the two—block tem-
perature curves are compared to the one—block solutions (keeping in mind that the one—
block results used a time step of 0.002 seconds). The code proved to be stable with results
very much like those in Figure 5.9, which demonstrate the effect of time step on accuracy.
So, this method of “Gauss—Seidel coupling” seems to allow the homogeneous solid to be

treated relatively easily, at least for this simple 2-D geometry, and there appears to be no
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restriction on time step. The code has been constructed so that the setting of an input pa-

rameter will determine whether to execute the Gauss—Seidel loop either inside or outside

of the grid—blocking loop.
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Figure 5.22 Comparison of 1-Block (Symbols) and 2-Block Implicit Coupling
(Curves) Solutions for 2—D Transient Test; Y = 0.5 m, Time Step = 0.002 Seconds

This will complete the results and discussion pertaining solely to the heat—-conduc-

tion solver. In summary, it has been found that the block—to—block thermal communication

among solid blocks can be a potential source of numerical problems, in spite of the fact

that the heat conduction problem on a single block is not computationally challenging. The

next group of results will concern the actual coupling of the heat—conduction solver to the

flow solver.
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Figure 5.24 Comparison of 1-Block (Symbols) and 2-Block Implicit Coupling
(Curves) Solutions for 2-D Transient Test; Y = 1.0 m, Time Step = 0.02 Seconds
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Coupling of Heat—Conduction Solver and Flow Solver

Steady Laminar-Flow Over a Flat Plate

The methodology for linking the two solvers is basically the same as that for the
composite slab. After all, a fluid region and a solid region differ only in their material
makeup and the fact that a fluid block has convective flux in addition to the diffusive flux
crossing grid—cell boundaries. At the fluid—solid interface, diffusive energy flux is the con-
cern just as for the composite slab.

As previously discussed, the fluid blocks calculate heat flux (regardless of block
number) and pass this to the solid blocks; the solid blocks return an interface temperature
to the fluid blocks. Within any given time step iteration (or Newton sub-iteration), the
fluid blocks are all processed first, and the heat fluxes sent to the appropriate solid bound-
aries. The solid blocks are then all solved. This is an explicit boundary condition for a
fluid—solid interface, but it allows for consistent communication in case of multiple fluid—
solid boundaries.

The first test of this fluid—solid coupling is a flat plate in laminar flow. The plate
will be of finite thickness, but thin enough that the thermal mass is small; therefore, the
fluid will be exposed, for all practical purposes, to a constant—temperature wall condition.
The convection heat transfer solution to this problem is given entirely in terms of dimen-
sionless parameters; these are the Nusselt Number, Nuy, the Reynolds Number, Rey, and

the Prandtl Number, Pr [41]. The expression relating these parameters is

Nu, = 0.332 /Re, Pri/3 : Nu, = % (5.12)

The convection coefficient, h, may be expressed as a function of x:

Nu,k
X

hx) =

= h(x) = ; x — 0. (5.13)
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The grid for this case consists of two fluid blocks and one solid block. The first
fluid block extends upstream of the plate’s leading edge for a short distance; the second
fluid block is in contact with the solid block. Both fluid blocks are oriented with increasing
k-indices in the streamwise direction and increasing i—directions normal to and away from
the fluid—solid interface. The solid block has increasing i—indices in streamwise direction
and increasing j—indices normal to and toward the fluid—solid interface. The purpose of the
different index orientation is to help test the generality of the blocking arrangement.

The grid dimensions are given in the table below. The physical dimensions of the
plate are a length of 0.1778 m (7 inches), and a thickness of 2e—04 m (0.008 inches). Initial
spacing away from the boundary on the fluid side is 7e—06 m and 1.27e—05 m on the solid
side. Initial spacing in the streamwise direction is 1.27e-05 m at the leading edge and

2.5e—05 m at the trailing edge.

Table 5.5 Block Numbers and Dimensions for Flat—Plate Grid

Block Number Grid Dimension
1 (fluid) 51x2x26
2 (fluid) 51x2x 181
3 (solid) 181 x7x2

The solid block is initialized to a constant temperature of 170 K with a constant
temperature of 200 K applied to the j = 1 boundary (opposite the fluid—solid boundary
where j = 7). Except for the fluid—solid boundary, all others of the solid are treated as adia-
batic walls. The plate is made thin enough that the fluid—solid boundary should reach an
effectively constant temperature of 200 K. The fluid blocks are initialized to a free—stream
Mach Number of 0.15 and free—stream temperature of 161 K; this temperature, and also
the plate length, come from an unrelated test case. The material properties of silver are

used for the plate, and a constant time step of 0.002 seconds applied.
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The simulation was run for 5,000 iterations (10 seconds). It was felt that this time
length would be sufficient to reach a steady state, given the thickness of the plate. As it
turns out, this was more than enough; interface temperatures near the leading edge (where
the greatest temperature difference was seen) had settled out after the first 1,000 iterations.

Figure 5.25 is a plot of the Nusselt Number vs streamwise direction, x. The circular
symbols are for the theoretical solution given by Equation (5.12). The solid curve is from
the coupled flow/heat—conduction solver and agrees well with the theoretical prediction.
The actual heat flux values that are passed from the fluid block to the solid block and the x
values of points along the boundary are output to a file. This file is then input to a small
code that evaluates the convection coefficient along the boundary by means of Newton’s
law of cooling. Reynolds Number and Prandtl Number are calculated using fluid proper-
ties evaluated at the so—called “film temperature” (the simple average of the wall and
free—stream temperatures, 180.5 K in this case; Prandtl Number, too, is at this tempera-
ture). Nusselt Number is then calculated using the convection coefficient, the x—position,
and the film—temperature conductivity.

A plot of the numerical and theoretical convection coefficients vs the x—direction is
given in Figure 5.26. The most disagreement here is in the region between the leading
edge and x = 0.05 m, where the numerical values are slightly less than the theoretical (i.e.,
the curve appears to be at the “edge” of the circles representing theoretical values). This
stands to reason in that the temperature values here are slightly less than 200 K due the
conduction within the solid. Figure 5.27 is a close—up view of the temperature contours
near the leading edge of the plate. The maximum temperature difference in the plate is just
over 0.1 K. The “cold spot™, as much as it can be called that here, is at the leading edge.

A second flat—plate test case was conducted with the same basic conditions as the
one just described. In this case, though, the thickness of the plate was increased to 0.05 m.

Moreover, the plate conductivity was reduced by a factor of 100, in order to see a notice-
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able temperature difference in the direction normal to the fluid—solid interface. The plate
density and specific heat were both reduced by a factor of 10 so that the plate diffusivity
will remain the same as before. The combination of thicker plate and smaller conductivity
(and thus larger temperature derivative) means that the number of points in the j—direction
needs to be increased (this was set at 51, so the solid grid block is now 181 x 51 x 2). Since
the plate is much thicker and the conductivity smaller, a higher temperature condition must
be specified on the boundary opposite the fluid—solid interface (j = 1), so that the tempera-
ture along this interface can be approximately 200 K; this new temperature condition is set
to 203.5 K. The same time step of 0.002 seconds is used and the code is executed for
20,000 iterations. The temperatures along the fluid-solid interface by this point have
changed less than 0.05 K since the iteration count of 18,000 (i.e., the last 4 seconds).

Figure 5.28 and Figure 5.29 are plots of the Nusselt Number and convection coef-
ficient (vs x) for this thicker flat plate. The shapes of the respective curves are very close to
those of the thin—plate case, and the agreement is close to the theoretical. And as for the
thin plate, the primary difference between the numerical and theoretical results is in the
region of x = 0.025 to x = 0.05 m. A greater temperature drop occurs across (i.e., normal
the fluid—solid interface) due to the smaller conductivity. Therefore, a smaller heat flux
(relative to the theoretical) is experienced in the leading—edge region, and the convection
coefficient curve 1is less than the theoretical here.

Figure 5.30 is a view of the temperature contours within the plate; the general con-
tour pattern is very similar to the thin plate with the “cold spot™ at the leading edge. The
interface temperature reaches a maximum of approximately 199.6 K and is within 0.1 K of
this value over roughly the last 0.018 m (0.75 inches) of the plate. The contour pattern
shows that heat {lux in the solid (normal to the contours) has components both tangential

and normal to the interface.
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The results from these two simple flat—plate test cases are encouraging. Thermal
communication across the fluid—solid interface seems to be accounted for well in this fun-

damental steady—state problem.

Transient Two—Dimensional Blunt—Nosed Wedge
A recent paper by Rahaim, et al. [16] provides numerical results of conjugate heat
transfer problems along with their own experimental data with which to compare. Temper-
ature measurements within the solid were recorded and plotted vs time. One of the experi-
ments conducted in their research was that of a blunt-nosed wedge in Mach 3 flow. This

experiment is the basis of the first transient test in this study.

Flow Direction =—s

2 3
5 6
4/ \ 7 I
Centerline of Wedge

Figure 5.31 Grid Blocking and Numbering for 2—-D Blunt—Nosed Wedge

The wedge itself is 3 inches in length, a base height of 1 inch, and a 12.5 degree
half-angle. The grid built for this model only included the top half; a symmetry condition

was assumed along the grid line extending upstream from the nose of the wedge. Also, the
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grid is only two—dimensional, which is an approximation, but end conditions were not spe-
cified in Rahaim [16] and the complexity of a full three—dimensional simulation was felt
to be beyond the level of this test case. The wedge used in the experiment is made of alu-
minum and the physical properties are the thermal conductivity K = 167 W/(m—K), the
density p = 2790 kg/m3, and the specific heat ¢ = 883 J/(kg—K); the diffusivity is about
68e—06 m?/sec.

The grid consists of three fluid blocks and four solid blocks. Initial spacing normal
to the fluid-solid interface is about 2.54e—06 m for the fluid blocks and twice that for the
solid blocks. The figure on the previous page gives the outline and arrangement of the grid

blocks, while the dimensions of the blocks are given in the following table.

Table 5.6 Block Numbers and Dimensions for Blunt—Nosed Wedge Grid

Block Number Grid Dimension
1 (fluid) 71 x 66 x 2
2 (fluid) 71 x 66 x 2
3 (fluid) 26 x 66 x 2
4 (solid) 71 x31x2
5 (solid) 71 x56x2
6 (solid) 26 x 56 x 2
7 (solid) 9% x 11 x2

The block—to—block communication within the solid was carried out explicitly;
1.e., there was no Gauss—Seidel coupling for these blocks. A heat—flux boundary condition
was supplied to the higher numbered blocks from the lower—numbered blocks. The high-
er—numbered blocks then pass the cell-centered temperature (from the cell adjoining the
interface), rather than the interface temperature, back to the lower—numbered block for use
in the next time step. This procedure gives a limited stability condition, but the time steps

mandated by the fluid aspect of the problem are such that the stability is of no concern.
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Figure 5.32 is a plot of the temperature at a point within the wedge; the location of
the point is approximately 0.1 inches from the nose and along the centerline. The curve
with circular symbols represents thermocouple values recorded by Rahaim [16]. Numeri-
cal results by Rahaim were obtained using two different flow solver, one of which (NAS-
FLO [43]) was developed on the basis of the work of Whitfield [2]: its predictions are
shown by the curve with square symbols. The curve with diamonds gives the results from
the present code (QCHEQNS). The agreement between the two sets of numerical results is
good for the first second of time in the simulation. After that, the results from QCHEQNS
start to tend away from the other numerical results and toward the experimental values.
Normally, this would be looked at favorably. However, the QCHEQNS—results are depart-
ing from the trend demonstrated by the other code. The results presented in Rahaim [16]
are given for a time of 11 seconds; the present plot is limited to two seconds because the
QCHEQNS-results continue to trend away from the numerical results of Rahaim [16].

Temperature vs Time for Blunt—Nosed Wedge
M_inf = 3.03; T_total =293 K; P_total = 469 kPa
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Figure 5.32 Temperature vs. Time at X = 0.1 Inches Interior from Nose of Wedge
4-Block Grid for Heat—Conduction Solver
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The most probable cause of this disagreement is the boundary conditions for the
wedge. The paper by Rahaim did not specify the conditions used on the base of the wedge
or at the two end faces (the constant—k boundaries for this case). This is a two—dimensional
grid assumed to be a cross—sectional slice at the center of the wedge; for this first attempt
at the problem, these boundaries were set to adiabatic wall conditions. During the early
part of the run, however, these boundary conditions would probably have little effect, and
this is felt to be the reason for the good agreement within the first few seconds.

Another test case was tried with this configuration to see if a change in the bound-
ary condition on the base of the wedge would have any effect. For this second case, the
wedge (solid) grid was modified such that it was only one block. The three fluid blocks
were combined into one, also. This change was made to see if the block—to-block bound-
aries had any effect on the disagreement just discussed.

The wedge base was arbitrarily set to a constant temperature of 300 K and main-
tained at this value of the first second of the run. After one second, the base temperature
was further reduced to 220 K, in an effort to improve the agreement with the NASFLO
solution.

Figure 5.33 is the same as the previous one, except now the results from
QCHEQNS with a 1-block fluid and 1-block solid grid are added. This plot shows practi-
cally no difference between the 4-block and 1-block wedge grids through t = 0.5 seconds.
After that, the 1-block curve can be seen to be slightly below that of the 4-block grid
curve. This effect can be seen more between t = 1 and t = 2 seconds, though the difference
is still small. The agreement between the 1-block and 4-block curves in the early part of
the run suggests that the block—to—block boundaries of the 4-block grid are working ap-
propriately and that the base boundary condition has yet to be felt. Where the base effect
can be noticed, it is seen to be small. So the question of appropriate wedge boundary con-

ditions still remains, and the best answer probably lies with a full three—dimensional simu-
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lation including the end and base flows. These tests have, however, given some insight

into the problem.

Temperature vs Time for Blunt—Nosed Wedge

M_inf = 3.03; T_total =293 K; P_total = 469 kPa
360 T T T

355

350

345

Temperature (K)

340 - b

G—=~© Experiment

[+—+1Rahaim, et al 1

335 | 4-Block Wedge i
+—+ 1-Block Wedge ]

330 Il Il Il
0 0.5 1 1.5 2

time (seconds)

Figure 5.33 Temperature vs. Time at X = 0.1 Inches Interior from Nose of Wedge
4-Block and 1-Block Grids for Heat—Conduction Solver

Figure 5.34 through Figure 5.36 show the temperature contours within the wedge
for different times for the 4-block grid. The solid black lines indicate the block boundary
locations; the temperature contours have good continuity across these boundaries. The
view is concentrated on the nose half of the wedge, since this is where the greatest changes
are occurring. The contours show that the heat flow is mostly normal to the nose of the
wedge. As the solution evolves, the contours take a shape indicating that the primary heat
flow is still toward the nose region and the temperature continues to drop; this stands to
reason, as the boundary temperatures downstream of the nose will increase due to the ener-
gy collected from upstream and also from viscous dissipation in the boundary layer. The

nose will continue to be the area of lowest temperature for the wedge, because energy is
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not being supplied through any of the other boundaries (practically the same as the leading

edge of the flat plate shown before). Consequently, the heat flow tends to become more
and more 1n the direction of the nose.

Figure 5.37 shows the temperature in the external flow about the wedge. The
blunt-nosed wedge causes a detached bow shock, which is easily seen upstream of the
nose. The fluid temperature approaches the stagnation temperature of 293 K (behind the
shock and along the symmetry boundary), except right at the interface of the wedge; the
fact that this stagnation temperature is below the temperature of the wedge is the reason

for the nose being the coolest portion of the wedge.

Transient Two—Dimensional Total-Temperature Probe

The final test case that assumes the coupling of the flow solver with the heat—con-
duction solver is based on a total-temperature measuring probe. The description and tests
of this device are given by Buttsworth, et al. [44]. Figure 5.38 gives a view of the overall
grid structure. It consists of 4 fluid blocks and 1 solid block; the dimensions are given in
the Table 5.7 following the figure . Initial spacing at the nose of the probe for the fluid
block 1s 3e—06 m and 6e—06 m for the solid block modeling the probe.

Again, a two—dimensional approximation is being made to what is indeed a three—
dimensional problem; the actual measuring device is composed of two cylindrical probes
in close proximity, with nearly—spherical ends (one of these probes is heated, while the
other is not).

The test time is just over 0.5 seconds, and it is reasoned that little effect in the cir-
cumferential direction (with respect to heat flow) will occur in this time. Also, only one of
the probes will be modeled since the measuring end of each experiences very nearly the
same condition as the other. Therefore, a two—dimensional grid with adiabatic conditions
is applied to the constant—k surfaces {again in the plane of flow) and a symmetry plane

along the centerline is used.
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Figure 5.38 Grid Blocking and Numbering for 2-D Total-Temperature Probe

Table 5.7 Block Numbers and Dimensions for Total-Temperature Probe Grid

Block Number Grid Dimension
1 (fluid) 41x21x2
2 (fluid) 136 x41x2
3 (fluid) 156 x31x2
4 (fluid) 71x71x2
5 (solid) 136 x 31 x2

The flow solver is impulsively started with a free—stream Mach Number of 0.38.

Free—stream pressure is set to approximately 91.7 kPa, free—stream temperature to 285 K.

These values correspond to total pressure and temperature of 1 atmosphere and 293 K,

respectively. The time step is set to 2e—05 seconds and maintained at this value for the

entire run; the length of the run was 0.5 seconds. Three Newton sub—iterations were exe-

cuted for the fluid block (none for the solid), and the time accuracy was kept at 15'-order.
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Viscous fluxes for the j—direction (normal to the fluid—solid interface) were calculated
with turbulent eddy viscosities included for the blocks nearest the probe.

The solid block was initialized to a constant temperature of 410 K in accordance
with Buttsworth [44]. All boundaries except that in contact with the fluid were treated as
adiabatic. Note that a portion of the inner boundary of the solid is off of the centerline.
This accounts for the fact that part of the probe is hollow to allow space for a small electric
heater to be inserted. The probe is made of fused quartz and the thermophysical properties
for this (at 400 K) are conductivity, ¥ = 1.51 W/(m-K), density, p = 2220 kg/m3 , and
specific heat, ¢ = 905 J/(kg—K). The conductivity and specific heat were adjusted at vari-
ous times within the run by linear interpolation with these same values at 300 K (kK = 1.38
W/(m-K) and ¢ = 745 J/(kg-K), respectively).

Temperature values at the nose of the probe in the fluid block (number 2) were re-
corded at various time levels. These values were taken from the files used to view the solu-
tion. The difference between the temperatures at the surface and just off the surface (i.e.,
j=1and j=2) was taken to calculate a 15—order temperature derivative normal to the
probe surface. The product of this approximate derivative and the conductivity of air was
taken to get a heat flux at the nose of the probe. The conductivity of air was adjusted at
10—degree intervals by linear interpolation between the values at 400 K and 350 K (0.0338
and 0.03 W/(m-K) ). These property values for quartz and air were again taken from the
appendices of Incropera and DeWitt [41].

Figure 5.39 is a plot of the nose temperatures vs time. The time is listed from 0 —
600 ms to agree with the plots from Buttsworth [44] (actual flow was not initiated until
100 ms, at which point a diaphragm was ruptured). The numerical values agree with ex-
periment quite well for the first 50 — 100 ms. Disagreement after that point continues to
increase for the duration of the run. Though the quantitative comparison of the numerical

and experimental temperatures is not perfect, qualitative results are in good agreement.
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Notice that the trend of the numerical curve matches that of the experiment with no abrupt
changes.

Figure 5.40 plots the heat flux at the nose (calculated as described above) vs time.
As can be expected from the temperature plot, the agreement is the best in the 100 — 200
ms time frame. Beyond that point, the numerical results disagree with experiment. The
numerical values predict a higher heat flux than experiment. This is physically consistent
with the temperature plot: the higher—than—experiment nose surface temperature will have
a greater temperature difference with the incoming air flow, and, thus, a higher heat flux.
As with the temperature plot, the encouraging aspect of this plot is that the shape of the
numerical curve matches very well with that of the experiment. Even though the agree-
ment is not perfect, the numerical and experimental values are relatively close.

Figure 5.41 through Figure 5.43 give a view of the temperature contours around
and within the probe. These pictures are focused on the nose region of the probe, and the
solid black lines mark the edges of the probe grid. The flow can be seen to separate near
where the leading—edge curvature turns fully downstream (this separation region contin-
ues to grow and extend downstream with time). The contours within the probe evolve in a
manner similar to that of the wedge: the heat flow takes on an early pattern of being pri-
marily in the upstream direction toward the nose. The temperatures can be seen to continue
to drop at the nose and within the probe. The multi—-dimensional effect of the energy diffu-

sion can certainly be seen.
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Figure 5.42 Temperature Contours for Total-Temperature Probe, Time = 400 ms
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CHAPTER VI

SUMMARY AND CONCLUSIONS

A numerical study of the coupling of conduction and convection heat transfer on
multi-block, structured grids has been presented. A portion of this study involved the de-
velopment of a heat—conduction code for the solution of the time—-dependent, multi—di-
mensional heat equation. Another aspect of the study was the coupling of this heat—con-
duction solver with an existing flow solver.

The primary focus of this study has been on thermal communication of the heat
conduction terms across block—to—block grid boundaries, treated in a time—accurate con-
text. Each grid block has been solved individually and then coupled with neighboring grid
blocks, either fluid or solid, by means of the continuity of heat flux (i.e., thermal energy)
and temperature at the respective block—to—block grid interface. This somewhat loose cou-
pling is a potential source of stability problems at the block—to—block interfaces, depend-
ing on the ratio of the Fourier Numbers of each block at the interface. The Fourier Number
can be viewed as a non—dimensional time (like the CFL number for wave—type problems)
and is a good measure of the time—dependent nature of the diffusion of the thermal energy
within the individual blocks.

If the materials on either side of an interface have a substantial difference in their
respective thermal diffusivities, then these materials may be viewed to be decoupled by
their very nature. The degree of this decoupling, of course, depends on the difference in

their diffusivities. Consequently, it is not surprising that materials with a greater difference
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in Fourier Numbers, often due to the difference in diffusivities, are more stable with respect
to the block—to—block thermal communication that has been outlined here. Conversely, the
more closely the values of Fourier Number across an interface, the more prone to stability
problems is the interface, especially when solid blocks are communicating with other solid
blocks (i.e., the pure diffusion problem). In these cases, either smaller, more-restrictive time
steps are required, or a more coupled treatment (such as the “Gauss—Seidel” coupling) is
needed. For these reasons, a substantial portion of this study was devoted to the conduction

within and communication between solid grid blocks.

Many other numerical and physical aspects of the general conjugate heat transfer
problem have not been addressed. The thermophysical properties of the solid materials
were always treated as constant, thus resulting in a linear heat equation for the solid grid
blocks. Also, the property of thermal expansion was not accounted for. These are impor-
tant factors that can certainly make a difference in the accuracy of the predictions. Howev-
er, the potential impact on cell Fourier Numbers (thermophysical properties affecting the
diffusivity and thermal expansion affecting the cell size) does not change the fact that the
difference in (or ratio of) the Fourier Numbers across an interface is of primary impor-
tance. Including variable thermophysical properties and possible expanding cell sizes sim-
ply means the difference in Fourier Numbers across the interface will not be constant.
Also, radiation is not being accounted for, and there are a number of problems in which
this mode of heat exchange can play a prominent role.

The thermal communication between solid and fluid blocks proved to be of relative
ease with respect to stability. Much of this is due to the fact that the time scale for fluid
problems is often much less than that for the diffusion in the solid. Therefore, using a mini-
mum time—stepping based on the fluid problem is small enough that possible stability
problems with, and within, the solid are not encountered. If a solid could possibly be con-

tained within one grid block (either because of a simple solid geometry or perhaps through
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the use of unstructured gridding for more complicated geometries), then the question of
stability problems between solid grid blocks becomes moot; the coupled fluid—solid prob-
lem itself has not been a computational challenge for the cases studied.

However, in the case of very low—speed flows, or perhaps free—convection prob-
lems, diffusion within the fluid could play a more significant role than in higher—speed,
forced convection flows. Time scales within the fluid and solid(s) may then become closer
in magnitude, in which case the fluid—solid communication might become more of a con-
cern. This may be an area that requires future consideration.

In summary, a heat—conduction solver has been written, verified, validated, and
coupled to an existing flow solver. Though some important aspects have not been ad-
dressed, this study has offered some good insight into the potential concerns and physical
behavior of coupled conduction—conduction and conduction—convection heat transfer

problems.

www.manaraa.com



REFERENCES

[1] Arabshahi, A., “A Dynamic Multiblock Approach to Solving the Unsteady Euler
Equations about Complex Configurations”, Ph.D. Dissertation, Mississippi State
University, Mississippi, May 1989.

[2] Whitfield, D.L., “Implicit Upwind Finite Volume Scheme for the Three-Dimen-
sional Euler Equations”, Engineering and Industrial Research Station Report,
MSSU-EIRS-ASE-85-1, Mississippi State University, Mississippi State, MS, Sep-
tember 1985.

[3] Whitfield, D.L., Janus, J.M., and Simpson, L.B., “Implicit Finite Volume High Res-
olution Wave—Split Scheme for Solving the Unsteady Three—Dimensional Euler and
Navier—Stokes Equations on Stationary or Dynamic Grids”, Engineering and Indus-
trial Research Station Report, MSSU-EIRS-88-2, Mississippi State University,
Mississippi State, MS, February 1988.

[4] Belk, D.M., “Three-Dimensional Euler Equations Solutions on Dynamic Blocked
Grids”, Ph.D. Dissertation, Mississippi State University, August 1986.

[S] Simpson, L. B., “Unsteady Three—Dimensinal Thin—Layer Navier—Stokes Solutions
on Dynamic Blocked Grids”, Ph.D. Dissertation, Mississippi State University, Mis-
sissippi, December 1988.

[6] Gatlin, B., “An Implicit, Upwind Method for Obtaining Symbiotic Solutions to the
Thin—Layer Navier—Stokes Equations”, Ph.D. Dissertation, Mississippi State Uni-
versity, Mississippi, August 1987.

[7] Cox, C.F, “An Efficient Solver for Flows in Local Chemical Equilibrium”, Ph.D.
Dissertation, Mississippi State University, Mississippi, December 1992.

[8] Lau, S.C., Ong, L.E., and Han, J.C., “Conjugate Heat Transfer in Channels with In-
ternal Longitudinal Fins”, Journal of Thermophysics and Heat Transfer, Vol. 3, No.
3, July—August 1989, pp. 303-308.

[91 Yu, W-S, Lin, H-T, and Hwang, T-Y, “Conjugate Heat Transfer of Conduction and
Forced Convection Along Wedges and a Rotating Cone”, International Journal of
Heat and Mass Transfer, Vol. 34, No. 10, 1991, pp. 2497-2506.

[10] Pozzi, A., and Lupo,M., “The Coupling of Conduction with Forced Convection
Over a Flat Plate”, International Journal of Heat and Mass Transfer, Vol. 32, No. 7,
1989, pp. 1207-1213.

104

www.manaraa.com



105

[11] Trevino, C., Espinoza, A., and Mendez, F., “Steady—State Analysis of the Conjugate
Heat Transfer Between Forced Counterflowing Streams”, Journal of Thermophys-
ics and Heat Transfer, Vol. 10, No. 3, July—August 1996, pp. 476—483.

[12] Joubert, P., and Le Quere, P., “Numerical Study of Thermal Coupling Between Con-
ductive Walls and a Boussinesq Stratified Fluid”, Numerical Heat Transfer, Part A,
Vol. 16, 1989, pp. 489-506.

[13] Bernier, M.A., and, “Conjugate Conduction and Laminar Mixed Convection in Ver-
tical Pipes for Upward Fow and Uniform Wall Heat Flux”’, Numerical Heat Trans-
fer, Part A, Vol. 21, 1992, pp. 313-332.

[14] Shope, F.L., “Conjugate Conduction—Convection Heat Transfer with a High—Speed
Boundary Layer”, Journal of Thermophysics and Heat Transfer, Vol. 8, No. 2,
April-June 1994, pp. 275-28]1.

[15] Janus, J.M., and Newman, J.C., “Aerodynamic and Thermal Design Optimization
for Turbine Airfoils”, ATAA-2000-0840, January, 2000.

[16] Rahaim, C.P, Kassab, A.J., and Cavalleri, R.J., “Coupled Dual Reciprocity Bound-
ary Element/Finite Volume Method for Transient Conjugate Heat Transfer”’, Jour-
nal of Thermophysics and Heat Transfer, Vol. 14, No. 1, January—March 2000, pp.
27-38.

[17] Sondak, D.L., and Dorney, D.J., “Simulation of Coupled Unsteady Flow and Heat
Conduction in Turbine Stage™, Journal of Propulsion and Power, Vol. 16, No. 6,
November—December 2000, pp. 1141-1148.

[18] Chang, K.C., and Payne, U.J., “Numerical Treatment of Diffusion Coefficients at
Interfaces”, Numerical Heat Transfer, Part A, Vol. 21, 1992, pp. 363-376.

[19] Shyy, W., and Burke, J., “Study of Iterative Characteristics of Convective—Diffusive
and Conjugate Heat Transfer Problems”, Numerical Heat Transfer, Part B, Vol. 26,
1994, pp. 21-37.

[20] Ruiz, O.E., and Black, W.Z., “A Conservative Iterative—Based Zonal Decomposi-

tion Scheme for Conduction Heat Transfer Problems”, Journal of Heat Transfer,
Vol. 121, February 1999, pp. 169-173.

[21] Janus, J.M., “Advanced 3—-D CFD Algorithm for Turbomachinery’’, Ph.D. Disserta-
tion, Mississippi State University, Mississippi, May 1989.

[22] Chen, J.P., “Unsteady Three—-Dimensional Thin—Layer Navier—Stokes Solutions for
Turbomachinery in Transonic Flow”’, Ph.D. Dissertation, Mississippi State Univer-
sity, Mississippi, December 1991.

[23] Thompson, J.F., Warsi, Z.U.A., and Mastin, C.W., Numerical Grid Generation,
Foundations and Applications, Elsevier Science Publishing Co., Inc., 1985, pp.
95-134.

www.manaraa.com



106
[24] White, EM., Viscous Fluid Flow, McGraw-Hill, Inc., 1991, pp. 23-31.

[25] Warsi, Z.U.A., Fluid Dynamics, Theoretical and Computational Approaches, CRC
Press, Inc., 1993, pp. 59-59.

[26] Baldwin, B.S., and Lomax, H., “Thin—Layer Approximation and Algebraic Model
for Separated Turbulent Flows”, ATAA-78-257, January, 1978.

[27] Briley, W.R., and McDonald, H., “Solution of the Multidimensional Compressible
Navier—Stokes Equations by Generalized Implicit Method”, Journal of Computa-
tional Physics, Vol. 24, 1977, pp. 372-397.

[28] Vanden, K.J., and Whitfield, D.L., “Direct and Iterative Algorithms for the Three—
Dimensional Euler Equations™, AIAA Journal, Vol. 33, No. 5, May 1995, pp.
851-858.

[29] Cinnella, P., “Flux—Split Algorithms for Flows with Non-Equilibrium Chemistry
and Thermodynamics”, Ph.D. Dissertation, Virginia Polytechnic Institute and State
University, Virginia, December 1989.

[30] Godunov, S.K., “Finite Difference Method for Numerical Comutation of Discontin-
uous Solutions of the Equations of Fluid Dynamics”, Mat. Sbornik, Vol. 47, No. 3,
1959, pp. 271-306. Translated as JPRS 7225 by the US Department of Commerce,
November 1960.

[31] Hirsch, C., Numerical Computation of Internal and External Flows, Volume 2, John
Wiley and Sons, Ltd., 1990, pp. 443—-472.

[32] Roe, P.L., “Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes”, Journal of Computational Physics, Vol. 43, 1981, pp. 357-372.

[33] Quirk, J.J., “A Contribution to the Great Riemann Solver Debate”, NASA CR
191409, ICASE Report 92—64, December 1992.

[34] Harten, A., Lax, P.D., and van Leer, B., “On Upstream Differencing and Godunov—
Type Schemes for Hyperbolic Conservation Laws”, SIAM Review, Vol. 25, 1983,
pp. 36-61.

[35] Osher, S.R., and Chakravarthy, S., “Very High Order Accurate TVD Schemes”,
ICASE Report 84—44, September 1984.

[36] Whitfield, D.L., “Newton—Relaxation Schemes for Nonlinear Hyperbolic Sys-
tems”, Engineering and Industrial Research Station Report, MSSU-EIRS—
ASE-90-3, Mississippi State University, Mississippi, October 1990.

[37] Beam, R.M., and Warming, R.F., “An Implicit Finite-Difference Algorithm for Hy-
perbolic Systems in Conservation Law Form™, Journal of Computational Physics,
Vol. 22, 1976, pp. 87-110.

[38] Dennis, J.E., Jr., and Schnabel, R.B., Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations, Prentice—Hall, Inc., 1983, pp. 86-92.

www.manaraa.com



107

[39] Whitfield, D.L., and Janus, J.M., “Three-Dimensional Unsteady Euler Equations
Solution Using Flux Vector Splitting”, AIAA-84—1552, June, 1984.

[40] Pankajakshan, R., Private Communication, December, 2000.

[41] Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John
Wiley and Sons, Inc., 1985, pp. 222-227.

[42] Ozisik, M.N., Boundary Value Problems of Heat Conduction, Dover Publications,
Inc., 1989, pp. 43-124.

[43] Cavalleri, R.J., and Tiarn, W., “‘CFD Evaluation of an Advanced Thrust Vector Con-
trol Concept”, AIAA-90-100, January 1990.

[44] Buttsworth, D.R., Jones, T.V,, and Chana, K.S., “Unsteady Total Temperature Mea-

surements Downstream of a High—Pressure Turbine”, Journal of Turbomachinery,
Vol. 120, October 1998, pp. 760-767.

www.manharaa.com




	A Numerical Study of the Conjugate Conduction-Convection Heat Transfer Problem
	Recommended Citation

	tmp.1625165283.pdf.VkdIE

